scholarly journals Development of a duplex droplet digital PCR assay for absolute quantitative detection of "Candidatus Liberibacter asiaticus"

PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0197184 ◽  
Author(s):  
Vijayanandraj Selvaraj ◽  
Yogita Maheshwari ◽  
Subhas Hajeri ◽  
Jianchi Chen ◽  
Thomas Greg McCollum ◽  
...  
2009 ◽  
Vol 99 (5) ◽  
pp. 480-486 ◽  
Author(s):  
A. Sechler ◽  
E. L. Schuenzel ◽  
P. Cooke ◽  
S. Donnua ◽  
N. Thaveechai ◽  
...  

A new medium designated Liber A has been designed and used to successfully cultivate all three ‘Candidatus Liberibacter spp.,’ the suspect causative agents of huanglongbing (HLB) in citrus. The medium containing citrus vein extract and a growth factor sustained growth of ‘Ca. Liberibacter spp.’ for four or five single-colony transfers before viability declined. Colonies, positive for ‘Ca. L. asiaticus’ by a 16s-based rDNA real-time polymerase chain reaction (RT-PCR) assay and sequencing, were irregular-shaped, convex, and 0.1 to 0.3 mm after 3 to 4 days. Suspect ‘Ca. L. asiaticus’ and ‘Ca. L. americanus’ cells were observed in infected tissue and on agar culture by scanning electron microscopy. The cells were ovoid to rod shaped, 0.3 to 0.4 by 0.5 to 2.0 μm, often with fimbriae-like appendages. Two strains of ‘Ca. L. asiaticus’ and one of ‘Ca. L. americanus’ grown on Liber A medium were pathogenic on citrus and could be isolated from noninoculated tissues of inoculated trees and seedlings 9 and 2 months later, respectively. The identity was confirmed by RT-PCR and 16s rDNA sequencing. This is the first report of the cultivation and pathogenicity of ‘Ca. L. asiaticus’ and ‘Ca. L. americanus’ associated with symptoms of HLB.


2017 ◽  
Vol 107 (6) ◽  
pp. 662-668 ◽  
Author(s):  
Z. Zheng ◽  
F. Wu ◽  
L. B. Kumagai ◽  
M. Polek ◽  
X. Deng ◽  
...  

‘Candidatus Liberibacter asiaticus’ (CLas), an α-proteobacterium, is associated with citrus Huanglongbing (HLB; yellow shoot disease). In California, two cases of CLas have been detected in Los Angeles County, one in Hacienda Heights in 2012 and the other in San Gabriel in 2015. Although all infected trees were destroyed in compliance with a state mandate, citrus industry stakeholder concerns about HLB in California are high. Little is known about the biology of CLas, particularly the California strains, hindering effective HLB management efforts. In this study, next-generation sequencing technology (Illumina MiSeq) was employed to characterize the California CLas strains. Data sets containing >4 billion (Giga) bp of sequence were generated from each CLas sample. Two prophages (P-HHCA1-2 and P-SGCA5-1) were identified by the MiSeq read mapping technique referenced to two known Florida CLas prophage sequences, SC1 and SC2. P-HHCA1-2 was an SC2-like or Type 2 prophage of 38,989 bp in size. P-SGCA5-1 was an SC1-like or Type 1 prophage of 37,487 bp in size. Phylogenetic analysis revealed that P-HHCA1-2 was part of an Asiatic lineage within the Type 2 prophage group. Similarly, P-SGCA5-1 was part of an Asiatic lineage within Type 1 prophage group. The Asiatic relatedness of both P-HHCA1-2 and P-SGCA5-1 was further presented by single nucleotide polymorphism analysis at terL (encoding prophage terminase) that has been established for CLas strain differentiation. The presence of different prophages suggests that the two California CLas strains could have been introduced from different sources. An alternative explanation is that there was a mixed CLas population containing the two types of prophages, and limited sampling in a geographic region may not accurately depict the true CLas diversity. More accurate pathway analysis may be achieved by including more strains collected from the regions.


Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1080-1086 ◽  
Author(s):  
Greg McCollum ◽  
Mark Hilf ◽  
Mike Irey ◽  
Weiqi Luo ◽  
Tim Gottwald

Huanglongbing (HLB) disease is the most serious threat to citrus production worldwide and, in the last decade, has devastated the Florida citrus industry. In the United States, HLB is associated with the phloem-limited α-proteobacterium ‘Candidatus Liberibacter asiaticus’ and its insect vector, the Asian citrus psyllid (ACP; Diaphorina citri). Significant effort is being put forth to develop novel citrus germplasm that has a lower propensity to succumb to HLB than do currently available varieties. Effective methods of screening citrus germplasm for susceptibility to HLB are essential. In this study, we exposed small, grafted trees of 16 citrus types to free-ranging ACP vectors and ‘Ca. L. asiaticus’ inoculum in the greenhouse. During 45 weeks of exposure to ACP, the cumulative incidence of ‘Ca. L. asiaticus’ infection was 70%. Trees of Citrus macrophylla and C. medica were most susceptible to ‘Ca. L. asiaticus’, with 100% infection by the end of the test period in three trials, while the complex genetic hybrids ‘US 1-4-59’ and ‘Fallglo’ consistently were least susceptible, with approximately 30% infection. Results obtained in this greenhouse experiment showed good agreement with trends observed in the orchard, supporting the validity of our approach for screening citrus germplasm for susceptibility to HLB.


Sign in / Sign up

Export Citation Format

Share Document