scholarly journals An investigation into internal exposure management needs for nuclear medicine practitioners and temporary visitors through I-131 internal dose assessment: Focusing on large hospitals in South Korea

PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0209244 ◽  
Author(s):  
Sang-Tae Kim ◽  
Jae-Ryong Yoo ◽  
Jong Min Park
2019 ◽  
Vol 12 (2(св)) ◽  
pp. 75-82
Author(s):  
E. K. Nilova ◽  
V. N. Bortnovsky ◽  
S. A. Tagai ◽  
N. V. Dudareva ◽  
L. V. Zhukova

241Am is the only radionuclide of Chernobyl radioactive fallout the content of which until 2058 continues to increase. The purpose of this work is to assess the 241Am internal exposure doses of residents of settlements on the territory adjacent to the resettlement lands of the Chernobyl nuclear power plant. To achieve this goal the current levels of 241Am and accompanying 137Cs content in the soil and foodstuffs were determined at the private settlements of the Bragin district of Gomel region of Belarus. 241Am (Eγ 59.6 keV) content in soil samples and 137Сs (Eγ 661 keV) content in soil/food samples were determined by gamma spectrometry. Determination of 241Am specific activity in food samples was performed by the radiochemical method using selective extraction-chromatographic resins. With an average level of 1.3 kBq/m2 , the maximum soil contamination density of 241Am can reach 3.6 kBq/m2 , and for 137Cs it is one or two orders of magnitude higher and ranges from 50 kBq/m2 to 350 kBq/m2 . The maximum specific activity of 241Am in products is determined in samples of leafy parsley – 33 mBq/kg, and in samples of potatoes, beets, onions per feather – not exceed 5 mBq/kg. The content of accompanying 137Cs in samples of plant products is in the range of 3-12 Bq/kg. In estimation of the internal dose of exposure by the food chain it is conservatively assumed that the population receives all the main components of the diet in their own farmstead. Calculation of the dose of internal exposure during inhalation is made under the assumption that the population performs work in the garden 4 hours a day for 7 months. The total expected dose of internal exposure from 241Am residents of settlements is dominated by the inhalation component, while the oral route is dominant in the formation of the total dose of internal exposure from concomitant 137Сs, which is 20 or more times higher than 241Am.


2020 ◽  
Vol 61 (6) ◽  
pp. 895-902
Author(s):  
Dong-Yeon Lee ◽  
Yong-Uk Kye ◽  
Hyo-Jin Kim ◽  
Jeung-Kee Kim ◽  
Yeong-Rok Kang

ABSTRACT In this study, we evaluated the effect of radiation dose on gonads during paediatric kidney nuclear medicine tests. Using Monte Carlo simulations, the distribution and effects of radiation were physically evaluated by displaying the distribution path of the source in the human body over time. In particular, the evaluation of doses in children, who are sensitive to radiation during nuclear medicine tests that use internal exposure among several types of medical exposures, was conducted to obtain data for the management of medical exposures. Our results indicated that under normal kidney function, the dose received by the target kidney was 0.430 mGy/mCi, which is ~6% higher than the dose suggested by the International Commission on Radiation Protection (ICRP). Furthermore, when kidney function was compromised, the dose estimated was 0.726 mGy/mCi, which is ~2% lower than the dose suggested by the ICRP. In the male and female gonads, namely the testicles and ovaries, the doses received were 0.359 mGy/mCi and 0.394 mGy/mCi, respectively, under normal kidney function. Similarly, under abnormal kidney function, the doses ranged from 0.187 to 0.353 mGy/mCi and 0.238 to 0.388 mGy/mCi in the male and female gonads, respectively.


2006 ◽  
Vol 34 (3) ◽  
pp. 413-421 ◽  
Author(s):  
Eric Visser ◽  
Ernst Postema ◽  
Otto Boerman ◽  
Jeroen Visschers ◽  
Wim Oyen ◽  
...  

KnE Energy ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Nur Rahmah Hidayati

At about 70% of nuclear medicine procedures have utilized <sup>99m</sup>Tc in their clinical practices.This has lead <sup>99m</sup>Tc becoming the most convenient radioisotope in nuclear medicine diagnostic. To estimate the internal radiation dose due to the administration of <sup>99m</sup>Tc to the patients, only few documents from International Commission of Radiation Protection (ICRP) have been available.  However, the calculation usually has applied Caucasian data in Standard Reference Man as a model. The objective of this study was to review the application of <sup>99m</sup>Tc in Indonesia and to compare the internal dose estimation for <sup>99m</sup>Tc procedures by using Organ Level Internal Dose Assessment/ EXponential Modeling (OLINDA/EXM) software. The result of calculation was compared between Adult Caucasian model and Asian Reference Man. The result shows that <sup>99m</sup>Tc has been well applied and developed for diagnostic procedures in Nuclear Medicine Department. Moreover, in most diagnostic procedures using <sup>99m</sup>Tc in Indonesia, adult patients will receive effective dose about 1-15% higher than adult patient in foreign countries which apply the Caucasian model. Hence, to estimate the similar stochastic risk from the same procedure, the maximum value in recommended administered dose should be avoided and need to be evaluated.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
C. Rääf ◽  
V. Barkauskas ◽  
K. Eriksson Stenström ◽  
C. Bernhardsson ◽  
H. B. L. Pettersson

AbstractThe pure alpha emitter 148Gd may have a significant radiological impact in terms of internal dose to exposed humans in case of accidental releases from a spallation source using a tungsten target, such as the one to be used in the European Spallation Source (ESS). In this work we aim to present an approach to indirectly estimate the whole-body burden of 148Gd and the associated committed effective dose in exposed humans, by means of high-resolution gamma spectrometry of the gamma-emitting radiogadolinium isotopes 146Gd and 153Gd that are accompanied by 148Gd generated from the operation of the tungsten target. Theoretical minimum detectable whole-body activity (MDA) and associated internal doses from 148Gd are calculated using a combination of existing biokinetic models and recent computer simulation studies on the generated isotope ratios of 146Gd/148Gd and 153Gd/148Gd in the ESS target. Of the two gamma-emitting gadolinium isotopes, 146Gd is initially the most sensitive indicator of the presence of 148Gd if whole-body counting is performed within a month after the release, using the twin photo peaks of 146Gd centered at 115.4 keV (MDA < 1 Bq for ingested 148Gd, and < 25 Bq for inhaled 148Gd). The corresponding minimum detectable committed effective doses will be less than 1 µSv for ingested 148Gd, but substantially higher for inhaled 148Gd (up to 0.3 mSv), depending on operation time of the target prior to the release. However, a few months after an atmospheric release, 153Gd becomes a much more sensitive indicator of body burdens of 148Gd, with a minimum detectable committed effective doses ranging from 18 to 77 µSv for chronic ingestion and between 0.65 to 2.7 mSv for acute inhalation in connection to the release. The main issue with this indirect method for 148Gd internal dose estimation, is whether the primary photon peaks from 146 and 153Gd can be detected undisturbed. Preliminary simulations show that nuclides such as 182Ta may potentially create perturbations that could impair this evaluation method, and which impact needs to be further studied in future safety assessments of accidental target releases.


2020 ◽  
Vol 35 (4) ◽  
pp. 380-385
Author(s):  
Dea Dundara-Debeljuh ◽  
Slaven Jurkovic ◽  
Ivan Pribanic ◽  
Neva Girotto ◽  
Svjetlana Grbac-Ivankovic ◽  
...  

Dose assessment of diagnostic nuclear medicine procedures is necessary to further optimize respective procedure, estimate radiation risk, improve radiation safety and verify compliance of local practice with guidelines. In line with Council Directive 2013/59/EURATOM, patient medical documentation should include information related to radiation exposure. The aim of this work is to present the patient radiation dose assessment system designed for routine clinical use, that uses in-house designed worksheets for dose calculation based on relevant parameters introduced by the ICRP publications. Dose reports provide information about the absorbed dose delivered to the target and non-target organs of interest and the effective dose for each diagnostic procedure. The data from the dose reports was used to investigate average patient exposure levels during a one-year period and the results are presented. The implemented system has improved the quality of services provided and understanding of radiation risks. Moreover, the presented results have stimulated further optimization of nuclear medicine processes.


2016 ◽  
Vol 173 (1-3) ◽  
pp. 192-197
Author(s):  
Nancy Puerta Yepes ◽  
Ana Rojo ◽  
Sebastián Gossio ◽  
José Luis Crudo

Sign in / Sign up

Export Citation Format

Share Document