scholarly journals Tissue-resident macrophages can be generated de novo in adult human skin from resident progenitor cells during substance P-mediated neurogenic inflammation ex vivo

PLoS ONE ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. e0227817
Author(s):  
Jennifer Gherardini ◽  
Youhei Uchida ◽  
Jonathan A. Hardman ◽  
Jérémy Chéret ◽  
Kimberly Mace ◽  
...  
2015 ◽  
Vol 23 (5) ◽  
pp. 685-702 ◽  
Author(s):  
Jenifer Mendoza‐Garcia ◽  
Anil Sebastian ◽  
Teresa Alonso‐Rasgado ◽  
Ardeshir Bayat

2019 ◽  
Vol 311 (4) ◽  
pp. 325-330 ◽  
Author(s):  
Tian Liao ◽  
Janin Lehmann ◽  
Sabine Sternstein ◽  
Arzu Yay ◽  
Guoyou Zhang ◽  
...  

2014 ◽  
Vol 1840 (8) ◽  
pp. 2635-2642 ◽  
Author(s):  
Andreas A. Armatas ◽  
Harris Pratsinis ◽  
Eleni Mavrogonatou ◽  
Maria T. Angelopoulou ◽  
Anastasios Kouroumalis ◽  
...  

1980 ◽  
Vol 7 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Hirokazu Yasuno ◽  
Motoaki Maeda ◽  
Michiko Sato ◽  
Akifumi Nishimura ◽  
Chika Shimizu ◽  
...  

2020 ◽  
Vol 94 (22) ◽  
Author(s):  
Megan G. Lloyd ◽  
Nicholas A. Smith ◽  
Michael Tighe ◽  
Kelsey L. Travis ◽  
Dongmei Liu ◽  
...  

ABSTRACT The herpesviruses varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) are endemic to humans. VZV causes varicella (chicken pox) and herpes zoster (shingles), while HCMV causes serious disease in immunocompromised patients and neonates. More effective, less toxic antivirals are needed, necessitating better models to study these viruses and evaluate antivirals. Previously, VZV and HCMV models used fetal tissue; here, we developed an adult human skin model to study VZV and HCMV in culture and in vivo. While VZV is known to grow in skin, it was unknown whether skin could support an HCMV infection. We used TB40/E HCMV and POka VZV strains to evaluate virus tropism in skin organ culture (SOC) and skin xenograft mouse models. Adult human skin from reduction mammoplasties was prepared for culture on NetWells or mouse implantation. In SOC, VZV infected the epidermis and HCMV infected the dermis. Specifically, HCMV infected fibroblasts, endothelial cells, and hematopoietic cells, with some infected cells able to transfer infection. VZV and HCMV mouse models were developed by subcutaneous transplantation of skin into SCID/beige or athymic nude mice at 2 independent sites. Viruses were inoculated directly into one xenograft, and widespread infection was observed for VZV and HCMV. Notably, we detected VZV- and HCMV-infected cells in the contralateral, uninoculated xenografts, suggesting dissemination from infected xenografts occurred. For the first time, we showed HCMV successfully grows in adult human skin, as does VZV. Thus, this novel system may provide a much-needed preclinical small-animal model for HCMV and VZV and, potentially, other human-restricted viruses. IMPORTANCE Varicella-zoster virus and human cytomegalovirus infect a majority of the global population. While they often cause mild disease, serious illness and complications can arise. Unfortunately, there are few effective drugs to treat these viruses, and many are toxic. To complicate this, these viruses are restricted to replication in human cells and tissues, making them difficult to study in traditional animal models. Current models rely heavily on fetal tissues, can be prohibitively expensive, and are often complicated to generate. While fetal tissue models provide helpful insights, it is necessary to study human viruses in human tissue systems to fully understand these viruses and adequately evaluate novel antivirals. Adult human skin is an appropriate model for these viruses because many target cells are present, including basal keratinocytes, fibroblasts, dendritic cells, and lymphocytes. Skin models, in culture and xenografts in immunodeficient mice, have potential for research on viral pathogenesis, tissue tropism, dissemination, and therapy.


Peptides ◽  
1991 ◽  
Vol 12 (2) ◽  
pp. 333-337 ◽  
Author(s):  
Ulrik Pedersen-Bjergaard ◽  
Lars Bøgeskov Nielsen ◽  
Kai Jensen ◽  
Lars Edvinsson ◽  
Inger Jansen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document