scholarly journals Role of endogenous and exogenous attention in task-relevant visual perceptual learning

PLoS ONE ◽  
2020 ◽  
Vol 15 (8) ◽  
pp. e0237912
Author(s):  
Kieu Ngoc Nguyen ◽  
Takeo Watanabe ◽  
George John Andersen
2017 ◽  
Vol 17 (10) ◽  
pp. 486
Author(s):  
Kieu Nguyen ◽  
Takeo Watanabe ◽  
George Andersen

2021 ◽  
Author(s):  
Mariel Roberts ◽  
Marisa Carrasco

SUMMARYVisual perceptual learning (VPL), or improved performance after practicing the same visual task, is a behavioral manifestation of the impressive neuroplasticity in the adult brain. However, its practical effectiveness is limited because improvements are often specific to the trained conditions and require significant time and effort. Thus, it is critical to understand the conditions that promote learning and its transfer. Covert spatial attention helps overcome VPL location and feature specificity in neurotypical adults, but whether it can for people with atypical visual development is unknown. Here we show that involuntary attention helps generalize learning beyond trained spatial locations in adults with amblyopia, an ideal population for investigation given their asymmetrically developed, but highly plastic, visual cortex. Our findings provide insight into the mechanisms underlying changes in neuro(a)typical brain plasticity after practice. Further, they reveal that attention can enhance the effectiveness of perceptual learning during rehabilitation of visual disorders.


2017 ◽  
Vol 139 ◽  
pp. 22-27 ◽  
Author(s):  
Mingxia Zhang ◽  
Jiangbo Tu ◽  
Bo Dong ◽  
Chuansheng Chen ◽  
Min Bao

2021 ◽  
Author(s):  
Qing He ◽  
Baoqi Gong ◽  
Keyan Bi ◽  
Fang Fang

Extensive training improves our ability to perceive visual contents around us, a phenomenon known as visual perceptual learning (VPL). Numerous studies have been conducted to understand the mechanisms of VPL, while the neural oscillatory mechanisms underpinning VPL has yet to be elucidated. To this end, we adopted transcranial alternating current stimulation (tACS), a neuromodulatory technique that can alter ongoing brain rhythms in a frequency-specific manner by applying external weak electric fields, to stimulate targeted cortical areas in human subjects while they performed an orientation discrimination learning task. Five groups of subjects undertook five daily training sessions to execute the task. Four groups received occipital tACS stimulation at 10 Hz (alpha band), 20 Hz (beta band), 40 Hz (gamma band), or sham 10 Hz (sham), and one group was stimulated at the sensorimotor regions by 10 Hz tACS. Compared with the sham stimulation, occipital tACS at 10 Hz, but not at 20 Hz or 40 Hz, increased both the learning rate and performance improvement. However, when 10 Hz tACS was delivered to the sensorimotor areas, the modulatory effects of tACS were absent, suggesting that tACS modulated the orientation discrimination learning in a frequency- and location-specific manner. Moreover, the tACS-induced enhancement lasted at least two months after the termination of training. Our findings provide strong evidence for the causal role of alpha oscillations in VPL and shed new light on the design of effective neuromodulation protocols that might facilitate rehabilitation for patients with neuro-ophthalmological disorders.


2013 ◽  
Vol 13 (9) ◽  
pp. 911-911
Author(s):  
J. Arizpe ◽  
M. Shrotri ◽  
C. Baker ◽  
V. Walsh

2018 ◽  
Author(s):  
Ruyuan Zhang ◽  
Duje Tadin

ABSTRACTVisual perceptual learning (VPL) can lead to long-lasting perceptual improvements. While the efficacy of VPL is well established, there is still a considerable debate about what mechanisms underlie the effects of VPL. Much of this debate concentrates on where along the visual processing hierarchy behaviorally relevant plasticity takes place. Here, we aimed to tackle this question in context of motion processing, a domain where links between behavior and processing hierarchy are well established. Specifically, we took advantage of an established transition from component-dependent representations at the earliest level to pattern-dependent representations at the middle-level of cortical motion processing. We trained two groups of participants on the same motion direction identification task using either grating or plaid stimuli. A set of pre- and post-training tests was used to determine the degree of learning specificity and generalizability. This approach allowed us to disentangle contributions from both low- and mid-level motion processing, as well as high-level cognitive changes. We observed a complete bi-directional transfer of learning between component and pattern stimuli as long as they shared the same apparent motion direction. This result indicates learning-induced plasticity at intermediate levels of motion processing. Moreover, we found that motion VPL is specific to the trained stimulus direction, speed, size, and contrast, highlighting the pivotal role of basic visual features in VPL, and diminishing the possibility of non-sensory decision-level enhancements. Taken together, our study psychophysically examined a variety of factors mediating motion VPL, and demonstrated that motion VPL most likely alters visual computation in the middle stage of motion processing.


2020 ◽  
Vol 131 (4) ◽  
pp. e82
Author(s):  
M. Bortoletto ◽  
A. Fertonani ◽  
C. Pirulli ◽  
A. Bollini ◽  
C. Miniussi

Sign in / Sign up

Export Citation Format

Share Document