scholarly journals A study of evaluating specific tissue oxygen saturation values of gastrointestinal tumors by removing adherent substances in oxygen saturation imaging

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0243165
Author(s):  
Keiichiro Nishihara ◽  
Keisuke Hori ◽  
Takaaki Saito ◽  
Toshihiko Omori ◽  
Hironori Sunakawa ◽  
...  

Objectives Oxygen saturation (OS) imaging is a new method of endoscopic imaging that has clinical applications in oncology which can directly measure tissue oxygen saturation (Sto2) of the surface of gastrointestinal tract without any additional drugs or devices. This imaging technology is expected to contribute to research into cancer biology which leads to clinical benefit such as prediction to efficacy of chemotherapy or radiotherapy. However, adherent substances on tumors such as blood and white coating, pose a challenge for accurate measurements of the StO2 values in tumors. The aim of this study was to develop algorithms for discriminating between the tumors and their adherent substances, and to investigate whether it is possible to evaluate the tumor specific StO2 values excluding adherent substances during OS imaging. Methods We plotted areas of tumors and their adherent substances using white-light images of 50 upper digestive tumors: blood (68 plots); reddish tumor (83 plots); white coating (89 plots); and whitish tumor (79 plots). Scatter diagrams and discriminating algorithms using spectrum signal intensity values were constructed and verified using validation datasets. StO2 values were compared between the tumors and tumor adherent substances using OS images of gastrointestinal tumors. Results The discriminating algorithms and their accuracy rates (AR) were as follows: blood vs. reddish tumor: Y> - 4.90X+7.13 (AR: 95.9%) and white coating vs. whitish tumor: Y< -0.52X+0.17 (AR: 96.0%). The StO2 values (median, [range]) were as follows: blood, 79.3% [37.8%–100.0%]; reddish tumor, 74.5% [62.0%–86.9%]; white coating, 73.8% [42.1%–100.0%]; and whitish tumor, 65.7% [53.0%–76.3%]. Conclusions OS imaging is strongly influenced by adherent substances for evaluating the specific StO2 value of tumors; therefore, it is important to eliminate the information of adherent substances for clinical application of OS imaging.

2020 ◽  
Vol 8 (2) ◽  
pp. e001815
Author(s):  
Grant A Murphy ◽  
Rajinder P Singh-Moon ◽  
Amaan Mazhar ◽  
David J Cuccia ◽  
Vincent L Rowe ◽  
...  

IntroductionThe use of non-invasive vascular and perfusion diagnostics are an important part of assessing lower extremity ulceration and amputation risk in patients with diabetes mellitus. Methods for detecting impaired microvascular vasodilatory function in patients with diabetes may have the potential to identify sites at risk of ulceration prior to clinically identifiable signs. Spatial frequency domain imaging (SFDI) uses patterned near-infrared and visible light spectroscopy to determine tissue oxygen saturation and hemoglobin distribution within the superficial and deep dermis, showing distinct microcirculatory and oxygenation changes that occur prior to neuropathic and neuroischemic ulceration.Research designs and methods35 patients with diabetes mellitus and a history of diabetic foot ulceration were recruited for monthly imaging with SFDI. Two patients who ulcerated during the year-long longitudinal study were selected for presentation of their clinical course alongside the dermal microcirculation biomarkers from SFDI.ResultsPatient 1 developed a neuropathic ulcer portended by a focal increase in tissue oxygen saturation and decrease in superficial papillary hemoglobin concentration 3 months prior. Patient 2 developed bilateral neuroischemic ulcers showing decreased tissue oxygen saturation and increased superficial papillary and deep dermal reticular hemoglobin concentrations.ConclusionsWounds of different etiology show unique dermal microcirculatory changes prior to gross ulceration. Before predictive models can be developed from SFDI, biomarker data must be correlated with the clinical course of patients who ulcerate while being followed longitudinally.Trial registration numberNCT03341559.


Critical Care ◽  
2009 ◽  
Vol 13 (Suppl 1) ◽  
pp. P239
Author(s):  
R Kopp ◽  
S Rex ◽  
K Dommann ◽  
G Schälte ◽  
G Dohmen ◽  
...  

2016 ◽  
Vol 36 (3) ◽  
pp. 12-70 ◽  
Author(s):  
Cathy Mitchell

Hypoperfusion is the most common event preceding the onset of multiple organ dysfunction syndrome during trauma resuscitation. Detecting subtle changes in perfusion is crucial to ensure adequate tissue oxygenation and perfusion. Traditional methods of detecting physiological changes include measurements of blood pressure, heart rate, urine output, serum levels of lactate, mixed venous oxygen saturation, and central venous oxygen saturation. Continuous noninvasive monitoring of tissue oxygen saturation in muscle has the potential to indicate severity of shock, detect occult hypoperfusion, guide resuscitation, and be predictive of the need for interventions to prevent multiple organ dysfunction syndrome. Tissue oxygen saturation is being used in emergency departments, trauma rooms, operating rooms, and emergency medical services. Tissue oxygen saturation technology is just as effective as mixed venous oxygen saturation, central venous oxygen saturation, serum lactate, and Stewart approach with strong ion gap, yet tissue oxygen saturation assessment is also a direct, noninvasive microcirculatory measurement of oxygen saturation.


Sign in / Sign up

Export Citation Format

Share Document