scholarly journals Impacts of long-term inorganic and organic fertilization on phosphorus adsorption and desorption characteristics in red paddies in southern China

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0246428
Author(s):  
Waqas Ahmed ◽  
Huang Jing ◽  
Liu Kailou ◽  
Sehrish Ali ◽  
Han Tianfu ◽  
...  

Soil phosphorus (P) adsorption and desorption occur in an important endogenous cycle linked with soil fertility problems and relevant to the environmental risk assessment of P. In our study, the effect of long-term inorganic and organic fertilization on P adsorption and desorption characteristics in relation to changes in soil properties was evaluated by selecting three long-term experimental sites in southern China. The selected treatments at each site were CK (unfertilized), NPK (synthetic nitrogen, phosphorus and potassium) and NPKM (synthetic NPK plus manure). The adsorption and desorption characteristics of P were evaluated using Langmuir and Freundlich isotherms. The results showed that long-term application of NPK plus manure significantly increased soil organic carbon (SOC), total P and available P at all three sites compared with the NPK and CK treatments. All three treatments fit these equations well. The maximum adsorption capacity (Qm) of P increased with NPKM treatment, and the binding energy of P (K) and the maximum buffering capacity (MBC) showed increasing trends. NPKM showed the highest Qm (2346.13 mg kg-1) at the Jinxian site, followed by Nanchang (221.16 mg kg-1) and Ningxiang (2219.36 mg kg-1). Compared to CK and NPK, the NPKM treatment showed a higher MBC as 66.64, 46.93 and 44.39 L kg-1 at all three sites. The maximum desorption capacity (Dm) of P in soil was highest with the NPKM treatment (157.58, 166.76, 143.13 mg kg-1), showing a better ability to release P in soil. The correlation matrix showed a significant positive correlation of SOC, total and available P with Qm, Dm and MBC. In conclusion, it is suggested that manure addition is crucial to improve P utilization in red paddy soils within the recommended range to avoid the risk of environmental pollution.

Soil Research ◽  
2020 ◽  
Vol 58 (2) ◽  
pp. 117 ◽  
Author(s):  
Musibau O. Azeez ◽  
Gitte Holton Rubæk ◽  
Ingeborg Frøsig Pedersen ◽  
Bent T. Christensen

Soil phosphorus (P) reserves, built up over decades of intensive agriculture, may account for most of the crop P uptake, provided adequate supply of other plant nutrients. Whether crops grown on soils with reduced supply of other nutrients obtain similar use-efficiency of soil P reserves remains unclear. In treatments of the Askov Long-Term Experiment (initiated in 1894 on light sandy loam), we quantified changes in soil total P and in plant-available P (Olsen P, water extractable P and P offtake in wheat grains) when P-depleted soil started receiving P in rock phosphate and when P application to soil with moderate P levels ceased during 1997–2017. Additionally we studied treatments with soil kept unfertilised for >100 years and with soil first being P depleted and then exposed to surplus dressings of P, nitrogen (N) and potassium in cattle manure. For soil kept unfertilised for >100 years, average grain P offtake was 6 kg ha–1 and Olsen P averaged 4.6 mg kg–1, representing the lower asymptotic level of plant-available P. Adding igneous rock phosphate to severely P-depleted soil with no N fertilisation had little effect on Olsen P, water extractable P (Pw), grain yields and P offtake. For soils with moderate levels of available P, withholding P application for 20 years reduced contents of Olsen P by 56% (from 16 to 7 mg P kg–1) and of Pw by 63% (from 4.5 to 1.7 mg P kg–1). However, the level of plant-available P was still above that of unfertilised soil. Application of animal manure to P-depleted soil gradually raised soil P availability, grain yield and P offtake, but it took 20 years to restore levels of plant-available P. Our study suggests symmetry between rates of depletion and accumulation of plant-available P in soil.


2018 ◽  
Vol 19 (3) ◽  
pp. 1306-1318 ◽  
Author(s):  
Yunhong Zhang ◽  
Shaomin Huang ◽  
Doudou Guo ◽  
Shuiqing Zhang ◽  
Xiao Song ◽  
...  

2010 ◽  
Vol 10 (8) ◽  
pp. 1466-1474 ◽  
Author(s):  
Ning Liu ◽  
Hongbo He ◽  
Hongtu Xie ◽  
Zhen Bai ◽  
Xudong Zhang ◽  
...  

Author(s):  
Cheng Gao ◽  
Jie Fan ◽  
Xujie Zhang ◽  
Zhiwei Gong ◽  
Zhenyu Tan

Abstract Metal ions in sediment were inherent Ca and Fe sources for biochar modification. In this work, effect of Ca2+ and Fe2+ released from sediment on biochar for phosphorus adsorption was evaluated. Results showed that, raw peanut shell biochar (PSB) was poor in phosphorus adsorption (0.48 mg/g); sediment-triggered biochar (S-PSB) exhibited P adsorption capacity of 1.32 mg/g in capping reactor and maximum adsorption capacity of 10.72 mg/g in Langmuir model. Sediment released Ca2+ of 2.2–4.1 mg/L and Fe2+/Fe3+ of 0.2–9.0 mg/L. The metals loaded onto biochar surface in the forms of Ca-O and Fe-O, with Ca and Fe content of 1.47 and 0.29%, respectively. Sediment metals made point of zero charge (pHpzc) of biochar shifted from 5.39 to 6.46. The mechanisms of enhanced P adsorption by S-PSB were surface complexation of CaHPO4 followed by precipitation of Ca3(PO4)2 and Ca5(PO4)3(OH). Sediment metals induced modification of biochar and improvement of P adsorption, which was feasible to overcome the shortcomings of biochar on phosphorus control in sediment capping.


2018 ◽  
Vol 84 (18) ◽  
Author(s):  
Yongxin Lin ◽  
Guiping Ye ◽  
Jiafa Luo ◽  
Hong J. Di ◽  
Deyan Liu ◽  
...  

ABSTRACTLong-term effects of inorganic and organic fertilization on nitrification activity (NA) and the abundances and community structures of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated in an acidic Ultisol. Seven treatments applied annually for 27 years comprised no fertilization (control), inorganic NPK fertilizer (N), inorganic NPK fertilizer plus lime (CaCO3) (NL), inorganic NPK fertilizer plus peanut straw (NPS), inorganic NPK fertilizer plus rice straw (NRS), inorganic NPK fertilizer plus radish (NR), and inorganic NPK fertilizer plus pig manure (NPM). In nonfertilized soil, the abundance of AOA was 1 order of magnitude higher than that of AOB. Fertilization reduced the abundance of AOA but increased that of AOB, especially in the NL treatment. The AOA communities in the control and the N treatments were dominated by theNitrososphaeraand B1 clades but shifted to clade A in the NL and NPM treatments.Nitrosospiracluster 8a was found to be the most dominant AOB in all treatments. NA was primarily regulated by soil properties, especially soil pH, and the interaction with AOB abundance explained up to 73% of the variance in NA. When NL soils with neutral pH were excluded from the analysis, AOB abundance, especially the relative abundance ofNitrosospiracluster 8a, was positively associated with NA. In contrast, there was no association between AOA abundance and NA. Overall, our data suggest thatNitrosospiracluster 8a of AOB played an important role in the nitrification process in acidic soil following long-term inorganic and organic fertilization.IMPORTANCEThe nitrification process is an important step in the nitrogen (N) cycle, affecting N availability and N losses to the wider environment. Ammonia oxidation, which is the first and rate-limiting step of nitrification, was widely accepted to be mainly regulated by AOA in acidic soils. However, in this study, nitrification activity was correlated with the abundance of AOB rather than that of AOA in acidic Ultisols.Nitrosospiracluster 8a, a phylotype of AOB which preferred warm temperatures, and low soil pH played a predominant role in the nitrification process in the test Ultisols. Our results also showed that long-term application of lime or pig manure rather than plant residues altered the community structure of AOA and AOB. Taken together, our findings contribute new knowledge to the understanding of the nitrification process and ammonia oxidizers in subtropical acidic Ultisol under long-term inorganic and organic fertilization.


2009 ◽  
Vol 66 (6) ◽  
pp. 819-826 ◽  
Author(s):  
Diogo Mazza Barbieri ◽  
José Marques Júnior ◽  
Luis Reynaldo Ferracciú Alleoni ◽  
Fernando José Garbuio ◽  
Livia Arantes Camargo

Hillslope curvatures are associated with specific environments that correlate to chemical and mineralogical attributes of soil, so determining specific management zones. Phosphorus is one of the main limiting factors to the development and longevity of sugarcane. The type and the mineralogical constitution of the clay fraction play an important role in the phosphorus (P) adsorption of soil. High proportion of gibbsite (Gb) in soil may be the major responsible for P adsorption. The relationships among spatial variability as a function of hillslope curvature, the proportion of kaolinite (Kt) and Gb, and phosphorus adsorption were evaluated in an Alfisol cultivated with sugarcane. Two plots of 1 ha of a concave and a convex hillslope area were selected and 121 samples were collected in each area. The maximum P adsorption was determined in six samples taken randomly in each area. Data were submitted to descriptive statistical and geostatistical analysis. The lowest average values of available phosphorus were found in the convex area. In this area, the proportion of gibbsite, expressed by the values of the ratio [Gb/(Gb + Ct)] and the values of maximum adsorption capacity of phosphorus were higher than in the concave area.


Sign in / Sign up

Export Citation Format

Share Document