scholarly journals Sediment metals adhering to biochar enhanced phosphorus adsorption in sediment capping

Author(s):  
Cheng Gao ◽  
Jie Fan ◽  
Xujie Zhang ◽  
Zhiwei Gong ◽  
Zhenyu Tan

Abstract Metal ions in sediment were inherent Ca and Fe sources for biochar modification. In this work, effect of Ca2+ and Fe2+ released from sediment on biochar for phosphorus adsorption was evaluated. Results showed that, raw peanut shell biochar (PSB) was poor in phosphorus adsorption (0.48 mg/g); sediment-triggered biochar (S-PSB) exhibited P adsorption capacity of 1.32 mg/g in capping reactor and maximum adsorption capacity of 10.72 mg/g in Langmuir model. Sediment released Ca2+ of 2.2–4.1 mg/L and Fe2+/Fe3+ of 0.2–9.0 mg/L. The metals loaded onto biochar surface in the forms of Ca-O and Fe-O, with Ca and Fe content of 1.47 and 0.29%, respectively. Sediment metals made point of zero charge (pHpzc) of biochar shifted from 5.39 to 6.46. The mechanisms of enhanced P adsorption by S-PSB were surface complexation of CaHPO4 followed by precipitation of Ca3(PO4)2 and Ca5(PO4)3(OH). Sediment metals induced modification of biochar and improvement of P adsorption, which was feasible to overcome the shortcomings of biochar on phosphorus control in sediment capping.

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2933
Author(s):  
Edgar Pineda Puglla ◽  
Diana Guaya ◽  
Cristhian Tituana ◽  
Francisco Osorio ◽  
María J. García-Ruiz

This study reports the adsorption capacity of lead Pb2+ and cadmium Cd2+ of biochar obtained from: peanut shell (BCM), “chonta” pulp (BCH) and corn cob (BZM) calcined at 500, 600 and 700 °C, respectively. The optimal adsorbent dose, pH, maximum adsorption capacity and adsorption kinetics were evaluated. The biochar with the highest Pb2+ and Cd2+ removal capacity is obtained from the peanut shell (BCM) calcined at 565 °C in 45 min. The optimal experimental conditions were: 14 g L−1 (dose of sorbent) and pH between 5 and 7. The sorption experimental data were best fitted to the Freundlich isotherm model. High removal rates were obtained: 95.96% for Pb2+ and 99.05. for Cd2+. The BCH and BZM revealed lower efficiency of Pb2+ and Cd2+ removal than BCM biochar. The results suggest that biochar may be useful for the removal of heavy metals (Pb2+ and Cd2+) from drinking water.


Soil Research ◽  
2020 ◽  
Vol 58 (5) ◽  
pp. 430 ◽  
Author(s):  
G. C. Poggere ◽  
V. Barrón ◽  
A. V. Inda ◽  
J. Z. Barbosa ◽  
A. D. B. Brito ◽  
...  

Maghemite (Mh) and magnetic susceptibility have been little studied in relation to phosphorus (P) sorption, despite the fact that tropical soils – particularly those derived from mafic rocks – may contain substantial amounts of this iron oxide. In this work, we investigated the relationship between P adsorption and magnetic susceptibility in tropical soils, and determined the maximum adsorption capacity of P (MACP) and P desorption in seven pedogenic clays from magnetic soils with contrasting parent materials and three synthetic Mh samples. Considering the heterogeneity of the soil dataset in this study, the exclusive adoption of magnetic susceptibility as an indicator of P adsorption potential in soil remains uncertain. The relationship between magnetic susceptibility and adsorbed P was more evident in the B horizon of red soils from basic igneous rocks. In this group, soils with magnetic susceptibility above 20 × 10−6 m3 kg−1 had high adsorbed P. Although the pedogenic clays exhibited lower MACP values (1353–2570 mg kg–1) than the synthetic Mh samples (3786–4321 mg kg–1), P desorption exhibited the opposite trend (~14% vs ~8%). The substantial P adsorption capacity of synthetic Mh confirmed the adsorption data for pedogenic clays, which were strongly influenced by magnetic susceptibility, Mh and gibbsite contents, and specific surface area.


1993 ◽  
Vol 27 (1) ◽  
pp. 107-113 ◽  
Author(s):  
R. A. Mann ◽  
H. J. Bavor

The phosphorus removal efficiency of three gravel based constructed wetland systems (CWSs) has been investigated in a two year study in which secondary sewage effluent was treated. The constructed wetlands systems, 100m × 4m × 0.5m with an impervious liner, comprised an unplanted gravel “control” trench and gravel trenches planted with monoculture stands of either Typhaorientalis or Schoenoplectusvalidus. Inlet and outlet phosphorus concentrations and vertical and linear profiles of phosphorus were determined to characterise immobilisation/translocation through the systems. Laboratory phosphorus adsorption experiments were conducted with regional gravels and alternative adsorptive media including industrial slag and ash by-products. Phosphorus adsorption in the large scale gravel systems was variable and ranged from −40% to 40%. Laboratory adsorption capacity studies conducted with the gravel substratum indicated that field adsorption potential could be successfully simulated and modelled. Ion exchange experiments have been used to evaluate gravel and industrial conglomerates, with a view to improving phosphorus immobilisation through substratum selection and effluent flow management. Langmuir and Freundlich isotherms characterised phosphorus adsorption and the maximum adsorption capacity of regional gravels ranged from 25.8 to 47.5 μg P/g compared to blast furnace slag 160 to 420 μg P/g and fly ash 260 μg P/g. These results indicate that further investigations into the inclusion of industrial waste substrata in a CWS are warranted.


2020 ◽  
Vol 10 (12) ◽  
Author(s):  
Tze Ling Kua ◽  
Muhammad Raziq Rahimi Kooh ◽  
Muhammad Khairud Dahri ◽  
Nur Afiqah Hazirah Mohamad Zaidi ◽  
YieChen Lu ◽  
...  

AbstractIpomoea aquatica (IA) was investigated for its potential as a low-cost adsorbent to remove toxic methyl violet 2B (MV2B) dye in aqueous solutions. Optimising parameters such as the effects of contact time, medium pH and ionic strength (using NaCl, NaNO3, KCl and KNO3) were investigated. The results indicated that 150 min were sufficient for the adsorption to reach an equilibrium state and no adjustment of pH medium was necessary. Batch adsorption experiments such as adsorption isotherm, thermodynamics and kinetics were investigated and the experimental isotherm data were fitted to six isotherm models, namely Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Redlich-Peterson and Sips, with the latter being the best-fit isotherm model showing maximum adsorption capacity (qmax) of 267.9 mg g−1. Thermodynamics studies indicated adsorption of MV2B to be exothermic in nature, occurring spontaneously. The kinetics was best described by the pseudo-second-order model. Regeneration of IA pointed to its reusability, maintaining high adsorption capacity even up until Cycle 5 when treated with acid (HCl) and base (NaOH). Functional groups such as hydroxyl and amine groups which could be involved in the adsorption of MV2B were determined using FTIR spectroscopy, and the point of zero charge of IA was found to be at pH 6.81.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yue Yin ◽  
Gaoyang Xu ◽  
Linlin Li ◽  
Yuxing Xu ◽  
Yihan Zhang ◽  
...  

A more applicable adsorbent was fabricated using industrial wastes such as red mud, fly ash, and riverbed sediments. The heavy metal inside the raw materials created metal hydroxy on the adsorbent surface that offered elevated adsorption capacity for phosphorus. The required equilibrium time for the adsorption is only 10 min. The theoretical maximum adsorption capacity of the adsorbent was 9.84 mg·g−1 inferred from the Langmuir adsorption isotherm. Higher solution pH favored phosphorus adsorption. Kinetics study showed that the adsorption could be better fitted by the pseudo-second-order kinetic model. The presence of coexisting anions had no significant adverse impact on phosphorus removal. The speciation of the adsorbed phosphorus indicated that the adsorption to iron and aluminum is the dominating adsorption mechanism. Moreover, a dynamic adsorption column experiment showed that, under a hydraulic time of 10 min, more than 80% of the phosphorus in the influent was removed and the surplus phosphorus concentration was close to 0.1 mg L−1. The water quality after adsorption revealed its applicability in real treatment. Consequently, the adsorbent synthesized from industrial wastes is efficient and applicable due to the high efficiency of phosphorus removal and eco-friendly behavior in solutions.


2018 ◽  
Vol 2 (1) ◽  
pp. 17-27
Author(s):  
Ade Oktasari

An experiment on Pb (II) metal ion adsorption using peanut (Arachis hypogea L.) shell without activation (KK), acid-activated (KKA), and base-activated (KKB) has been conducted. Peanut shell powder was activated using H3PO4 and KOH to improve adsorption effectivity and capacity. Characterization results using FT-IR spectrophotometer showed peak at 3410 and 2901 cm-1 indicated OH dan CH aliphatic from framework of cellulose. Optimum condition of Pb(II) adsorption for KK, KKA and KKB was occurred at the same optimum pH, that was pH 5, with contact time 60, 90 and 70 min, respectively. The adsorption kinetic parameter of Pb(II) ion for KK, KKA, and KKB followed pseudo second order kinetic with rate constants (k) in order of 12.279, 4.149, and 32.258 g mmol-1 min-1, with maximum adsorption capacity based on Langmuir isotherm model of 0.598, 0.505, and 0.622 mmol g-1, and adsorption energy of 26.735, 25.789, and 29.245 kJ mol-1, respectively. The results indicated that KOH-activated peanut (Arachis hypogea L.) shell has good adsorption affinity for Pb(II) with highest adsorption capacity compare to those from non-activated and acid-activated.


2011 ◽  
Vol 340 ◽  
pp. 461-466
Author(s):  
Ding Long Li ◽  
Jing Si Tian ◽  
Hou Hu Zhang ◽  
Yi Min Zhang ◽  
Yue Xiang Gao

The mineralized refuse has a well particle size distribution and is similar asirregularly polyhedron with the high contents of Fe, Al, and Ca, which might be thephosphorus pool. The absorption and desorption of phosphorus, nitrification, and denitrification in the mineralized refuse and clay has been investigated by using batch incubation, respectively. The variation of phosphorous adsorption in the mineralized refuse and clay is fitted the Langmuir isotherm equation. The maximum phosphorus adsorption capacity in the mineralized refuse calculated based on the Langmuir isotherm equation is 2914 mg kg-1. Both the maximum adsorption capacity and adsorption rate of phosphorus in the mineralized refuse are over 2.0-fold more than that of the clay. The desorption rate of phosphorus in the mineralized refuse is only about 30%. NH4+-N contents in the mineralized refuse samples fell from 129 mg N kg-1 to 83.0 mg N kg-1 within the first 24 h during the nitrification process. Accordingly, the NO3--N content in the mineralized increased from 137 mg N kg-1 to 170 mg N kg-1. While the decrease of NH4+-N contents and the increase of NO3--N contents in the clay was only 1/2 and 1/6 as large as in the mineralized refuse, respectively. During the denitrification process, the K-value of the fitted zero-order kinetics for NO3--N denitrification in the mineralized refuse was 6.5-fold higher than in the clay.


2019 ◽  
Vol 42 ◽  
pp. e45914
Author(s):  
Giovanni Aleixo Batista ◽  
Maria Letícia Martins Silva ◽  
Willian de Paula Gomes ◽  
Isabelle Cristina Oliveira Neves ◽  
Paula Chequer Gouveia Mól ◽  
...  

Whey protein has high biological value and functional properties. Therefore, it is necessary to develop methods to recover this valuable protein and minimize the environmental impacts. Adsorptive processes using alternative adsorbents from agroindustrial waste increase the number of alternatives for adequate final disposal of the waste and add value. The aim of this study was to develop a mesoporous activated carbon (AC) from defective coffee beans (DCB) for the adsorption of fresh whey protein. The morphological structure of the adsorbent produced was characterized, and both Raman spectroscopy, FTIR and thermal analyses were performed; and the effect of pH on the adsorption capacity (q, mg g-1) was evaluated. The characterization showed that: the AC exhibited a porous size between 33 and 43 Å, corresponding to mesoporous materials; the crystallite size (La) of AC was estimated at 9.31 ± 0.14 nm; the highest adsorption capacity value (239.1781 mg g-1) was achieved at pH 2.5 and 25ºC; and the point of zero charge of the adsorbent was at pH 2.0. The pseudo first-order model fit best to the experimental results (R2 > 0.99) of whey protein adsorption onto activated carbon, and the Langmuir model was the most appropriate to represent the experimental data, with a maximum adsorption capacity of 378.4380 mg g-1, demonstrating the potential of AC obtained from DCB to adsorb fresh whey protein.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3092
Author(s):  
Jianchuan Sun ◽  
Awang Gao ◽  
Xuhui Wang ◽  
Xiangyu Xu ◽  
Jiaqing Song

In this work, an organic-free method was used to synthesize different morphological boehmite by controlling the crystallization temperature, and alumina adsorbents were obtained by baking the boehmites at 500 °C. The alumina adsorbents were characterized by X-ray diffraction (XRD), High resolution transmission electron microscope (HRTEM), Fourier transform infrared (FT-IR), N2 adsorption/desorption analysis, and their phosphorus adsorption properties were comparatively investigated by a series of experiments. The results showed that the self-prepared alumina adsorbents were lamellar and fibrous material, while the industrial adsorbent was a granular material. The lamellar alumina adsorbents had the largest specific surface area and showed better phosphorus adsorption capacity. The maximum adsorption capacity could reach up to 588.2 mg·g−1; and only 0.8 g·L−1 of lamellar alumina adsorbent is needed to treat 100 mg·L−1 phosphorus solution under the Chinese level 1 discharge standard (0.5 mg·L−1). Further investigation suggests that the lamellar alumina adsorbent kept high adsorption capacity in various solution environments.


2021 ◽  
Author(s):  
◽  
Farzana Nargis

Modification of natural clays may be a useful approach to produce an effective and low-cost adsorbent to control phosphorous, which is a key factor in controlling the eutrophication of surface waters. In this study, natural clay samples were collected, characterized, modified with ZrCl4, and then their adsorption capacity for removing phosphorus from contaminated water was studied. XRD analysis showed that the natural clay consists of kaolinite, illite, and nontronite as dominant clay mineral phases. The maximum adsorption capacity of the modified clay increased from 0.493 to 11.83 mg P/g compared to the unmodified clay. The adsorption process was fast for both natural and modified samples, achieving more than 80% and 90% phosphorus removal with natural and modified samples, respectively in less than 4 hours. The adsorption data for both clays best fit the Langmuir isotherm, and the rate of phosphorus adsorption was found to follow a pseudo-secondorder kinetic model. The adsorption capacity of both adsorbents decreased with increasing pH, and for the modified clay the change was more significant. Full factorial design and response surface methodology were applied to evaluate and optimize the effects of initial P concentration, contact time, pH, and dose. From the model, the maximum P removal efficiency predicted for the synthetic solution was 91.5% and 99.9% by natural and modified clay, respectively. R2(≈0.98) indicates that the observed results fitted well with the model prediction. Similar to the batch studies, the fixed bed column study showed the developed adsorbents are efficient in removing phosphorus from water in a continuous process as well.


Sign in / Sign up

Export Citation Format

Share Document