Depletion, accumulation and availability of soil phosphorus in the Askov long-term field experiment

Soil Research ◽  
2020 ◽  
Vol 58 (2) ◽  
pp. 117 ◽  
Author(s):  
Musibau O. Azeez ◽  
Gitte Holton Rubæk ◽  
Ingeborg Frøsig Pedersen ◽  
Bent T. Christensen

Soil phosphorus (P) reserves, built up over decades of intensive agriculture, may account for most of the crop P uptake, provided adequate supply of other plant nutrients. Whether crops grown on soils with reduced supply of other nutrients obtain similar use-efficiency of soil P reserves remains unclear. In treatments of the Askov Long-Term Experiment (initiated in 1894 on light sandy loam), we quantified changes in soil total P and in plant-available P (Olsen P, water extractable P and P offtake in wheat grains) when P-depleted soil started receiving P in rock phosphate and when P application to soil with moderate P levels ceased during 1997–2017. Additionally we studied treatments with soil kept unfertilised for >100 years and with soil first being P depleted and then exposed to surplus dressings of P, nitrogen (N) and potassium in cattle manure. For soil kept unfertilised for >100 years, average grain P offtake was 6 kg ha–1 and Olsen P averaged 4.6 mg kg–1, representing the lower asymptotic level of plant-available P. Adding igneous rock phosphate to severely P-depleted soil with no N fertilisation had little effect on Olsen P, water extractable P (Pw), grain yields and P offtake. For soils with moderate levels of available P, withholding P application for 20 years reduced contents of Olsen P by 56% (from 16 to 7 mg P kg–1) and of Pw by 63% (from 4.5 to 1.7 mg P kg–1). However, the level of plant-available P was still above that of unfertilised soil. Application of animal manure to P-depleted soil gradually raised soil P availability, grain yield and P offtake, but it took 20 years to restore levels of plant-available P. Our study suggests symmetry between rates of depletion and accumulation of plant-available P in soil.

2018 ◽  
Vol 64 (No. 9) ◽  
pp. 441-447 ◽  
Author(s):  
Jarosch Klaus A ◽  
Santner Jakob ◽  
Parvage Mohammed Masud ◽  
Gerzabek Martin Hubert ◽  
Zehetner Franz ◽  
...  

Soil phosphorus (P) availability was assessed with four different soil P tests on seven soils of the Ultuna long-term field experiment (Sweden). These four soil P tests were (1) P-H<sub>2</sub>O (water extractable P); (2) P-H<sub>2</sub>O<sub>C10</sub> (water extractable P upon 10 consecutive extractions); (3) P-AL (ammonium lactate extractable P) and (4) P-C<sub>DGT</sub> (P desorbable using diffusive gradients in thin films). The suitability of these soil P tests to predict P availability was assessed by correlation with plant P uptake (mean of preceding 11 years) and soil P balancing (input vs. output on plot level for a period of 54 years). The ability to predict these parameters was in the order P-H<sub>2</sub>O<sub>C10</sub> &gt; P-C<sub>DGT</sub> &gt; P-H<sub>2</sub>O &gt; P-AL. Thus, methods considering the P-resupply from the soil solid phase to soil solution performed clearly better than equilibrium-based extractions. Our findings suggest that the P-AL test, commonly used for P-fertilizer recommendations in Sweden, could not predict plant P uptake and the soil P balance in a satisfying way in the analysed soils.


2004 ◽  
Vol 84 (4) ◽  
pp. 459-467 ◽  
Author(s):  
Md. Abul Kashem ◽  
Olalekan Oluwole Akinremi ◽  
Geza Joseph Racz

Information on the extractable P in soils treated with different organic amendments and how it changes with time is important to a sound management of manure addition to agriculture soils. This laboratory study investigated the impact of adding municipal biosolids, hog and cattle manures and monoammonium phosphate (MAP) on extractable P in soils. Phosphorus was added at rates of 0, 110, 220, 440 and 880 mg P kg-1 for the Osborne soil (Gleysolic Humic Vertisol), and 0, 123, 307 and 614 mg P kg-1 for the Lakeland soil (Gleyed Rego Black Chernozem) in the form of biosolids, hog manure, cattle manure and MAP. The soils were incubated at field capacity for 1, 4, 16 and 32 wk after which they were extracted using H2O, NH4Cl, NaHCO3 (Olsen P), and the Kelowna and Mehlich-3 extracts. Regardless of extractant and soil, extractable P was small 1 wk after adding biosolids (17-93 mg kg-1 as Olsen P) and large with MAP (59-672 mg kg-1 as Olsen P) while hog and cattle manures were intermediate between biosolids and MAP (20-461 mg kg-1 as Olsen P). In biosolids-amended soils, extractable P increased slightly with increasing incubation time indicating net P mineralization. With MAP, extractable P declined from 672 mg kg-1 after 1 wk to 157 mg kg-1 after 16 wk of incubation at the highest P application rate in the Osborne soil. In the Lakeland soil, the decrease in extractable P with MAP addition was small (from 398 to 332 mg kg-1) and was similar to the changes with cattle manure P with incubation time. Extractable P with cattle manure in the Osborne soil and with hog manure in the Lakeland soil did not change with incubation time. In both soils, extraction efficiency was in the order of H2O < NH4Cl < NaHCO3 < Kelowna < Mehlich-3. Across P application rates, the efficiency of added P as measured by NaHCO3 increased only with biosol ids from 12% after 1 wk to 21% after 32 wk of incubation, while it decreased in the same period from 55 to 44% with hog manure, from 34 to 32% with cattle manure and from 74 to 17% with MAP in the Osborne soil. Soil samples taken 4 wk following addition o f hog and cattle manures should reflect plant-available P, while soil samples taken within the same period following the application of biosolids are likely to underestimate plant-available P. Key words: Extractable phosphorus, organic amendments, soils, single extraction, incubation


1995 ◽  
Vol 75 (3) ◽  
pp. 311-318 ◽  
Author(s):  
John E. Richards ◽  
Thomas E. Bates ◽  
S. C. Sheppard

Long-term fertilizer-P application affects soil-P distribution and forms. These effects must be characterized to use fertilizer P most efficiently. In three southern Ontario soils of varying texture, we determined changes in soil organic P (Po) and inorganic P (Pi) caused by fertilizer P application (0–90 kg broadcast P ha−1 yr−1 during 10 yr of corn production. Soil P was characterized by (1) annual measurement of 0.5 M NaHCO3-extractable P (Olsen-P) and (2) sequential extraction from soil taken at the beginning of the experiment and after receiving 0 to 90 kg broadcast P ha−1 yr−1 for 10 yr. Fertilizer P increased Olsen-P concentrations in all soils. The increases were proportional to the cumulative amount of P applied. Based on all three soils, 16 kg P ha−1 was required to increase Olsen-P concentrations by 1 mg L−1 soil. After 10 yr of 90 kg broadcast P ha−1 yr−1, labile Pi fractions (resin P and NaHCO3 P) were increased, as was NaOH-extractable Pi in all soils. On the most P-deficient soil (Conestogo SiL), where corn grain yields were increased by fertilizer P, P fertilization also increased HCl-Pi, residual P (H2O2-H2SO4 extractable P) and labile Po (NaHCO3-Po and NaOH-Po). A P balance was calculated, which accounted for additions to, removals from, and changes in the total P status of the 0–20 cm layer. When no broadcast P was applied, there was an unaccounted-for input (possibly from the subsoil), of 20.9 kg P ha−1 yr−1 on the Conestogo SiL. When 90 kg broadcast P ha−1 yr−1 was applied to the Fox SL, the coarsest soil studied, there was a deficit of 30.9 kg P ha−1 yr−1 and elevated Olsen-P concentrations in the 25–36 cm depth, suggesting downward movement on fertilizer P. It appears that subsoil P was involved in the P cycle of these two soils. Key words: Continuous corn, P fertilization, sequential extraction, organic phosphorus, inorganic phosphorus, labile phosphorus, subsoil P, leaching


Soil Research ◽  
2007 ◽  
Vol 45 (5) ◽  
pp. 397 ◽  
Author(s):  
David Nash ◽  
Murray Hannah ◽  
Kirsten Barlow ◽  
Fiona Robertson ◽  
Nicole Mathers ◽  
...  

Phosphorus (P) exports from agricultural land are a problem world-wide and soil tests are often used to identify high risk areas. A recent study investigated changes in soil (0–20 mm), soil water and overland flow in 4 recently laser-graded (<1 year) and 4 established (laser-graded >10 years) irrigated pastures in south-eastern Australia before and after 3 years of irrigated dairy production. We use the results from that study to briefly examine the relationships between a series of ‘agronomic’ (Olsen P, Colwell P), environmental (water-extractable P, calcium chloride extractable P, P sorption saturation, and P sorption), and other (total P, organic P) soil P tests. Of the 2 ‘agronomic’ soil P tests, Colwell P explained 91% of the variation in Olsen P, and Colwell P was better correlated with the other soil tests. With the exception of P sorption, all soil P tests explained 57% or more of the total variation in Colwell P, while they explained 61% or less of Olsen P possibly due to the importance of organic P in this soil. Variations in total P were best explained by the organic P (85%), Calcium chloride extractable P (83%), water-extractable P (78%), and P sorption saturation (76%). None of the tests adequately predicted the variation in P sorption at 5 mg P/L equilibrating solution concentration. The results of this limited study highlight the variability between soil P tests that may be used to estimate P loss potential. Moreover, these results suggest that empirical relationships between specific soil P tests and P export potential will have limited resolution where different soil tests are used, as the errors in the relationship between soil test P and P loss potential are compounded by between test variation. We conclude that broader study is needed to determine the relationships between soil P tests for Australian soils, and based on that study a standard protocol for assessing the potential for P loss should be developed.


Soil Research ◽  
2013 ◽  
Vol 51 (5) ◽  
pp. 427 ◽  
Author(s):  
R. J. Dodd ◽  
R. W. McDowell ◽  
L. M. Condron

Long-term application of phosphorus (P) fertilisers to agricultural soils can lead to in the accumulation of P in soil. Determining the rate of decline in soil P following the cessation of P fertiliser inputs is critical to evaluating the potential for reducing P loss to surface waters. The aim of this study was to use isotope exchange kinetics to investigate the rate of decline in soil P pools and the distribution of P within these pools in grazed grassland soils following a halt to P fertiliser application. Soils were sourced from three long-term grassland trials in New Zealand, two of which were managed as sheep-grazed pasture and one where the grass was regularly cut and removed. There was no significant change in total soil P over the duration of each trial between any of the treatments, although there was a significant decrease in total inorganic P on two of the sites accompanied by an increase in the organic P pool, suggesting that over time P was becoming occluded within organic matter, reducing the plant availability. An equation was generated using the soil-P concentration exchangeable within 1 min (E1 min) and P retention of the soil to predict the time it would take for the water-extractable P (WEP) concentration to decline to a target value protective of water quality. This was compared with a similar equation generated in the previous study, which used the initial Olsen-P concentration and P retention as a predictor. The use of E1 min in place of Olsen-P did not greatly improve the fit of the model, and we suggest that the use of Olsen-P is sufficient to predict the rate of decline in WEP. Conversely, pasture production data, available for one of the trial sites, suggest that E1 min may be a better predictor of dry matter yield than Olsen-P.


Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Tobias Hartmann ◽  
Iris Wollmann ◽  
Yawen You ◽  
Torsten Müller

Extractive tests for determining the plant-availability of soil phosphorus (P) give varying results due to the inherently different characteristics of the extraction solution. Generally, classical soil P tests such as the Olsen or calcium acetate/lactate (CAL) method do not give an indication on the total amount of plant available P, but merely give an indication of the equilibrium between soil and extraction solution. It is also not entirely clear which fractions of P are directly determined through the various methods of extraction, i.e., determined P must not be immediately plant available, as is the case for rock phosphate. It is therefore possible that extraction methods either over or under estimate the amount of P available for plant consumption. In this research, we compared three methods of soil P determination (CAL, Olsen and diffusive gradients in thin films (DGT)) with regards to their ability to determine P species (Ca(H2PO4)2, CaHPO4, Ca3(PO4)2 and Inositol-6-hexakisphosphate) added to soils of high sorption capacity, immediately after as well as two weeks after application. For each of the methods, it could be shown that sorption processes in the soil immediately (0 days incubation) fix P to a point where it is not extractable through any of the described methods. These sorption processes continue over time, leading to a further decrease of determined P. The acidic CAL extraction method gives higher results of extractable P compared to the Olsen method. Due to the extraction of Ca3(PO4)2, the CAL method may overestimate immediately plant-available P. The most suitable methods for the determination of immediately plant available P may therefore be the Olsen and DGT methods. Organic IP6 is not determined by any of the extraction methods. At low concentrations of soil P, the DGT method may fail to give results.


1993 ◽  
Vol 73 (2) ◽  
pp. 173-181 ◽  
Author(s):  
R. P. Zentner ◽  
C. A. Campbell ◽  
F. Selles

Producers in western Canada have applied phosphorus (P) fertilizer to annual crops for many years. This has increased soil available P and gradually decreased the expected yield response to P fertilization, but yield responses to small amounts of P placed with the seed are still reported regardless of soil available P levels. Controlled growth chamber studies suggest that the P responses should be most apparent during cool, wet springs. This 24-yr field study compared the yields of two fallow–spring wheat–spring wheat (F–W–W) systems, one fertilized with N and P each crop year, and the other fertilized with only N. The study, which was part of a long-term crop rotation experiment, was conducted on an Orthic Brown Chernozemic loam at Swift Current, Saskatchewan. Bicarbonate-extractable P (Olsen P) in the 0- to 15-cm depth in spring of the treatment receiving no P remained relatively constant (about 19 kg ha−1) throughout the study, while P fertilizer application at 6.5 kg ha−1 yr−1 increased extractable soil P by about 0.9 kg ha−1 yr−1. However, this increase in available P has not reduced yield responses to seed-placed P over the years. Regression analysis showed that yield response to P on fallow soil was positively related to temperature between emergence and the three-leaf stage and to precipitation at dough stage, but negatively related to precipitation near seeding time. For wheat grown on stubble, response to P was negatively related to temperature between 10 and 16 June (i.e., about the three- to four-leaf stage) and positively to precipitation received at anthesis stage. We concluded that, although available P in prairie soils has probably increased in recent years, producers can still expect to receive a 10% yield increase when small amounts of P are applied with the seed.Key words: Crop rotations, bicarbonate-extractable P, Olsen P, temperature effects, effect of precipitation


2011 ◽  
Vol 60 (2) ◽  
pp. 343-358
Author(s):  
Péter Csathó ◽  
Marianna Magyar ◽  
Erzsébet Osztoics ◽  
Katalin Debreczeni ◽  
Katalin Sárdi

A szabadföldi trágyázási (tartam)kísérletek eredményeit talaj-, illetve diagnosztikai célú növényvizsgálatok segítségével tudjuk kiterjeszteni, általánosítani – figyelembe véve természetesen a kiterjesztés korlátait is. Célszerűnek láttuk ezen túl a talaj könnyen oldható tápelem-, közöttük P-tartalmát is meghatározni a hazánkban hivatalosan elfogadott AL- (ammónium-laktátos) módszer mellett az Európai Unióban és Észak-Amerikában alkalmazott P-tesztekkel is (CaCl2-, H2O-, Olsen-, Bray1-, LE-, Mehlich3- stb.) a hazai OMTK kísérletek talajmintáiban. A kísérleti helyek talajtulajdonságaiban megnyilvánuló jelentős különbségek lehetőséget adnak rá, hogy a talaj P-teszteket – és a növényi P-felvételt – jellegzetes hazai talajokon, sokszor szélsőséges talajparaméterek mellett vizsgáljuk. Az egyes P-szintek között a 28 év átlagában mintegy évi 50 kg P2O5·ha-1volt a különbség. A P0-szinten mért P-tartalmak jól jelezték az egyes kísérleti helyek talajának eltérő P-ellátottságát, illetve, közvetve, fizikai féleségében, pH és mészállapotában meglévő különbségeket. A P2-szinten – a hazai talajokra, P-igényes növényekre a hazai szabadföldi P-trágyázási tartamkísérleti adatbázisban talált összefüggésekre alapozott – új AL-P határértékek szerint csupán a bicsérdi csernozjom barna erdőtalajon nem javult a P-ellátottság legalább a „jó” szintig. Vizsgálataink megerősítették az AL-módszer függőségét a CaCO3-tartalomtól: a Mehlich3 módszerrel való összefüggésben a karbonátmentes és a karbonátos talajok csoportja erőteljesen elkülönült egymástól. Az AL-P korrekció elvégzése, azaz az AL-P értékeknek egy standard talajtulajdonság-sorra való konvertálása (KA: 36; pH(KCl): 6,8; CaCO3: 0,1%) látványosan csökkentette az AL-módszernek a talaj CaCO3-tartalmától való függőségét. Az AL-P és Olsen-P, valamint a korrigált AL-P és Olsen-P tartalmak összehasonlításában ugynakkor ugyanez az összefüggés nem volt állapítható, ami arra utal, hogy az Olsen módszer bizonyos fokig szintén pH- és mészállapot függő. Kísérleti eredményeink megerősítették a Sarkadi-féle AL-P korrekciós modell helytálló voltát. Fenti megállapításunkat ugyanakkor a növényi P-tartalmakkal való összefüggéseknek is igazolniuk kell. Szükséges tehát a talajvizsgálati eredményeknek a diagnosztikai célú növényvizsgálatokkal, valamint a terméseredményekkel való összevetése. A tartamkísérletek talajai lehetőséget nyújtanak a környezetvédelmi célú P-vizsgálatok értékelésére, a talaj P-feltöltöttsége környezeti kockázatának becslésére. Ezekkel a kérdésekkel a cikksorozat további részeiben kívánunk foglalkozni.


2014 ◽  
Vol 38 (5) ◽  
pp. 1487-1495 ◽  
Author(s):  
Ciro Antonio Rosolem ◽  
Alexandre Merlin

Phosphorus fixation in tropical soils may decrease under no-till. In this case, P fertilizer could be surface-spread, which would improve farm operations by decreasing the time spend in reloading the planter with fertilizers. In the long term, less soluble P sources could be viable. In this experiment, the effect of surface-broadcast P fertilization with both soluble and reactive phosphates on soil P forms and availability to soybean was studied with or without fertilization with soluble P in the planting furrow in a long-term experiment in which soybean was grown in rotation with Ruzigrass (Brachiaria ruziziensis). No P or 80 kg ha-1 of P2O5 in the form of triple superphosphate or Arad reactive rock phosphate was applied on the surface of a soil with variable P fertilization history. Soil samples were taken to a depth of 60 cm and soil P was fractionated. Soybean was grown with 0, 30, and 60 kg ha-1 of P2O5 in the form of triple phosphate applied in the seed furrow. Both fertilizers applied increased available P in the uppermost soil layers and the moderately labile organic and inorganic forms of P in the soil profile, probably as result of root decay. Soybean responded to phosphates applied on the soil surface or in the seed furrow; however, application of soluble P in the seed furrow should not be discarded. In tropical soils with a history of P fertilization, soluble P sources may be substituted for natural reactive phosphates broadcast on the surface. The planting operation may be facilitated through reduction in the rate of P applied in the planting furrow in relation to the rates currently applied.


2016 ◽  
Vol 73 (12) ◽  
pp. 2953-2958 ◽  
Author(s):  
H. E. Andersen ◽  
J. Windolf ◽  
B. Kronvang

Abstract We investigated leaching of dissolved phosphorus (P) from 45 tile-drains representing animal husbandry farms in all regions of Denmark. Leaching of P via tile-drains exhibits a high degree of spatial heterogeneity with a low concentration in the majority of tile-drains and few tile-drains (15% in our investigation) having high to very high concentration of dissolved P. The share of dissolved organic P (DOP) was high (up to 96%). Leaching of DOP has hitherto been a somewhat overlooked P loss pathway in Danish soils and the mechanisms of mobilization and transport of DOP needs more investigation. We found a high correlation between Olsen-P and water extractable P. Water extractable P is regarded as an indicator of risk of loss of dissolved P. Our findings indicate that Olsen-P, which is measured routinely in Danish agricultural soils, may be a useful proxy for the P leaching potential of soils. However, we found no straight-forward correlation between leaching potential of the top soil layer (expressed as either degree of P saturation, Olsen-P or water extractable P) and the measured concentration of dissolved P in the tile-drain. This underlines that not only the source of P but also the P loss pathway must be taken into account when evaluating the risk of P loss.


Sign in / Sign up

Export Citation Format

Share Document