scholarly journals Application of machine learning to the identification of joint degrees of freedom involved in abnormal movement during upper limb prosthesis use

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246795
Author(s):  
Sophie L. Wang ◽  
Conor Bloomer ◽  
Gene Civillico ◽  
Kimberly Kontson

To evaluate movement quality of upper limb (UL) prosthesis users, performance-based outcome measures have been developed that examine the normalcy of movement as compared to a person with a sound, intact hand. However, the broad definition of “normal movement” and the subjective nature of scoring can make it difficult to know which areas of the body to evaluate, and the expected magnitude of deviation from normative movement. To provide a more robust approach to characterizing movement differences, the goals of this work are to identify degrees of freedom (DOFs) that will inform abnormal movement for several tasks using unsupervised machine learning (clustering methods) and elucidate the variations in movement approach across two upper-limb prosthesis devices with varying DOFs as compared to healthy controls. 24 participants with no UL disability or impairment were recruited for this study and trained on the use of a body-powered bypass (n = 6) or the DEKA limb bypass (n = 6) prosthetic devices or included as normative controls. 3D motion capture data were collected from all participants as they performed the Jebsen-Taylor Hand Function Test (JHFT) and targeted Box and Blocks Test (tBBT). Range of Motion, peak angle, angular path length, mean angle, peak angular velocity, and number of zero crossings were calculated from joint angle data for the right/left elbows, right/left shoulders, torso, and neck and fed into a K-means clustering algorithm. Results show right shoulder and torso DOFs to be most informative in distinguishing between bypass user and norm group movement. The JHFT page turning task and the seated tBBT elicit movements from bypass users that are most distinctive from the norm group. Results can be used to inform the development of movement quality scoring methodology for UL performance-based outcome measures. Identifying tasks across two different devices with known variations in movement can inform the best tasks to perform in a rehabilitation setting that challenge the prosthesis user’s ability to achieve normative movement.

2017 ◽  
Vol 42 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Alix Chadwell ◽  
Laurence Kenney ◽  
Malcolm Granat ◽  
Sibylle Thies ◽  
John S Head ◽  
...  

Background: Current outcome measures used in upper limb myoelectric prosthesis studies include clinical tests of function and self-report questionnaires on real-world prosthesis use. Research in other cohorts has questioned both the validity of self-report as an activity assessment tool and the relationship between clinical functionality and real-world upper limb activity. Previously,1 we reported the first results of monitoring upper limb prosthesis use. However, the data visualisation technique used was limited in scope. Study Design: Methodology development. Objectives: To introduce two new methods for the analysis and display of upper limb activity monitoring data and to demonstrate the potential value of the approach with example real-world data. Methods: Upper limb activity monitors, worn on each wrist, recorded data on two anatomically intact participants and two prosthesis users over 1 week. Participants also filled in a diary to record upper limb activity. Data visualisation was carried out using histograms, and Archimedean spirals to illustrate temporal patterns of upper limb activity. Results: Anatomically intact participants’ activity was largely bilateral in nature, interspersed with frequent bursts of unilateral activity of each arm. At times when the prosthesis was worn prosthesis users showed very little unilateral use of the prosthesis (≈20–40 min/week compared to ≈350 min/week unilateral activity on each arm for anatomically intact participants), with consistent bias towards the intact arm throughout. The Archimedean spiral plots illustrated participant-specific patterns of non-use in prosthesis users. Conclusion: The data visualisation techniques allow detailed and objective assessment of temporal patterns in the upper limb activity of prosthesis users. Clinical relevance Activity monitoring offers an objective method for the assessment of upper limb prosthesis users’ (PUs) activity outside of the clinic. By plotting data using Archimedean spirals, it is possible to visualise, in detail, the temporal patterns of upper limb activity. Further work is needed to explore the relationship between traditional functional outcome measures and real-world prosthesis activity.


2016 ◽  
Vol 41 (3) ◽  
pp. 294-302 ◽  
Author(s):  
Ali Hussaini ◽  
Peter Kyberd

Background:Advancements in upper limb prosthesis design have focused on providing increased degrees of freedom for the end effector through multiple articulations of a prosthetic hand, wrist and elbow. Measuring improvement in patient function with these devices requires development of appropriate assessment tools.Objectives:This study presents a refined clothespin relocation test for measuring performance and assessing compensatory motion between able-bodied subjects and subjects with upper limb impairments.Study design:Comparative analysis.Methods:Trunk and head motions of 13 able-bodied subjects who performed the refined clothespin relocation test were compared to the motion of a transradial prosthesis user with a single degree of freedom hand.Results:There were observable differences between the prosthesis user and the able-bodied group. The assessment used provided a clear indication of the differences in motion through analysis of compensatory motion.Conclusion:The refined clothespin relocation test provides additional benefits over the standard clothespin assessment and makes identification of compensatory motions easily identifiable to the researcher. While this article establishes the method for the new assessment, further validation will need to be performed with more users.Clinical relevanceThe refined test provides a more defined structure for the trajectory of the hand/terminal device than the standard protocol for the clothespin relocation test. This will help researchers interested in motion studies of limb segments to efficiently compare and analyse motion between able-bodied and prosthesis user groups.


2010 ◽  
Vol 34 (2) ◽  
pp. 109-128 ◽  
Author(s):  
Helen Y. N. Lindner ◽  
Birgitta Sjöqvist Nätterlund ◽  
Liselotte M. Norling Hermansson

The International Classification of Functioning, Disability and Health (ICF) has been recommended as a framework for evaluation of aspects of health. The aim of this study was to compare the contents of outcome measures for upper limb prosthesis users by using the ICF. Measurement focus and psychometric properties of these measures were also investigated. Outcome measures that used upper limb prosthesis users as subjects in their development and psychometric evaluations were selected. The psychometric studies ( n = 14) were reviewed and scored and the items in the measures were linked to the ICF. One measure for all ages (ACMC), five paediatric measures (CAPP-FSI, CAPP-PSI, PUFI, UBET and UNB) and two adult measures (OPUS and TAPES) were selected. The concepts extracted ( n = 393) were linked to 54 categories in the ICF. The ACMC, CAPP-FSI, UBET, UNB and PUFI measure categories mostly under the ICF component ‘Activity and participation’. The TAPES and OPUS also measure ICF categories that describe the emotional and social status of a person. The main conclusion is that the use of a mixture of outcome measures would give a better picture on the aspects of our clients. Measures that focus on the social interaction in paediatric users are required.


1986 ◽  
Vol 10 (1) ◽  
pp. 27-34 ◽  
Author(s):  
S. G. Millstein ◽  
H. Heger ◽  
G. A. Hunter

Three hundred and fourteen adult upper limb amputees were reviewed retrospectively at the Ontario Workers' Compensation Board. A questionnaire was used to evaluate the use of body and electrically powered prostheses. Follow-up ranged from 1 to 49 years with a mean of 15 years. Results indicated that complete or useful acceptance of an electrically powered prosthesis was reported by 69 of 83 amputees (83%); 199 of 291 amputees (68%) used the cable operated hook, 57 of 291 (20%) used the cable operated hand and 40 of 83 (48%) used the cosmetic prosthesis. The majority of amputees used more than one prosthesis for their functional needs and should be fitted with more than one type of prosthesis. Acceptance of an upper limb prosthesis by 89% (196/220) of below-elbow, 76% (56/74) of above-elbow and 60% (12/20) of high level amputees indicates that for most upper limb amputees, their prostheses are well used and essential to their personal and employment activities.


2001 ◽  
Vol 25 (2) ◽  
pp. 113-118 ◽  
Author(s):  
T. A-Z. K. Gaber ◽  
C. M. Gardner ◽  
S. G. B. Kirker

Objective: To determine the perceived benefit, pattern of use and problems of the ICEROSS socket for upper limb prostheses.Design: Structured questionnaire sent to patients provided with ICEROSS systems.Setting: NHS artificial limb clinic.Subjects: All patients (20) who have used an upper limb prosthesis with an ICEROSS inner socket between 1995–1999.Main outcome measures: Purpose-designed questionnaire.Results: Replies were obtained from 18 patients. Eight (8) amputees continue to use their ICEROSS limb regularly (44%) after a mean of 32 months. Ten (10) amputees stopped using the ICEROSS system. Six (6) developed persistent skin problems, 2 switched to myoelectric prostheses, 1 was unable to put the ICEROSS on independently and 1 amputee stopped using all kinds of prostheses because he did not find them useful. Fourteen (14) amputees complained of phantom pain, 4 of whom reported worsening of the pain with ICEROSS sockets.Conclusion: The ICEROSS socket provides good suspension for upper limb prostheses, but its use is limited by skin problems and incompatibility with myoelectric contacts.


1998 ◽  
Vol 10 (4) ◽  
pp. 84-91 ◽  
Author(s):  
Peter J. Kyberd ◽  
David J. Beard ◽  
Jane J. Davey ◽  
J Dougall Morrison

Sign in / Sign up

Export Citation Format

Share Document