scholarly journals Patients with scans without evidence of dopaminergic deficit (SWEDD) do not have early Parkinson’s disease: Analysis of the PPMI data

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246881
Author(s):  
Jeong Won Lee ◽  
Yoo Sung Song ◽  
Hyeyun Kim ◽  
Bon D. Ku ◽  
Won Woo Lee

Background To evaluate whether patients with scans without evidence of dopaminergic deficit (SWEDD) have early Parkinson’s disease (PD). Methods The clinical characteristics, striatal specific binding ratios (SBRs), and the indices of I-123 FP-CIT SPECT images of 50 SWEDD patients, 304 PD patients, and 141 healthy controls were acquired from the Parkinson’s Progression Markers Initiative (PPMI) data and evaluated during a 2-year clinical follow-up period. Results Of the 50 subjects with SWEDD, PD was confirmed in 13 subjects (the PD-SWEDD group), while the remaining 37 subjects had other diseases (the Other-SWEDD group). Striatal SBR values and striatal asymmetry indices of the PD group were significantly different with those of the PD-SWEDD and Other-SWEDD groups at both baseline and after 2 years (p < 0.001). Putaminal SBR values of the PD-SWEDD group were significantly decreased after 2 years (p < 0.05). There was no difference of the SBR values between baseline and after 2 years in the Other-SWEDD group. A baseline MDS-UPDRS III score matched comparison of the PD and PD-SWEDD group was done due to the large difference of the subject numbers. Striatal SBR values and striatal asymmetry indices were significantly different (p < 0.001) between the two groups at both baseline and after 2 years, but there were no significant difference with respect to the MDS-UPDRS III scores after 2 years between the two groups. Conclusion The different SBR values and asymmetry indices between the PD and PD-SWEDD groups at baseline and after 2 years indicate that SWEDD may not be early PD, but rather a different disease entity.

2017 ◽  
Vol 51 (2) ◽  
Author(s):  
Ranhel C. De Roxas ◽  
Roland Dominic G. Jamora

Introduction. Coenzyme Q10, also known as Ubiquinone, is a substance now being used as a dietary supplement in many countries including the Philippines. It has also been the focus of several researches as treatment for several diseases including Parkinson’s Disease. Several studies have shown that Coenzyme Q10 inhibits mitochondrial dysfunction in Parkinson’s Disease, hence delaying its progression. Objectives. The objective of this study is to assess and summarize the available evidence on the efficacy and safety of Coenzyme Q10 administration in the prevention of the progression of early Parkinson’s Disease. Methods. This is meta-analysis of randomized controlled trials on the use of Coenzyme Q10 in Parkinson’s Disease. A literature search in several databases was conducted for relevant studies. Three randomized controlled trials met the inclusion criteria. The efficacy of Coenzyme Q10 were measured using the total and the component scores of the Unified Parkinson Disease Rating Scale on follow-up. On the other hand, safety were measured using the withdrawal rate and the associated adverse reactions during the therapy of CoQ10. The Review Manager Software was utilized for the meta-analysis. Results. Compared to Placebo, treatment of CoQ10 did not show any significant difference in the mean scores of the UPDRS mental and ADL scores. Interestingly, the UPDRS motor score showed a significant difference between Coenzyme Q10 and placebo, but no significant difference when a subgroup analysis between high-dose (-4.03 [-15.07-7.01], p-value 0.47, I2 67%, P for heterogeneity 0.08) and low-dose Coenzyme Q10 (0.53 [-0.891.94], p-value 0.47, I2 34%, P for heterogeneity 0.22) was done. Overall, there was no significant difference in the total UPDRS score (0.68 [-0.61-1.97], p-value 0.30, I2 0%, P for heterogeneity 0.70). The most common side effects of the use of Coenzyme Q10 are anxiety, back pain, headache, sore throat, nausea, dizziness and constipation. Conclusion. Contrary to some animal and human studies, this meta-analysis showed that the use of CoQ10 results to nonsignificant improvement in all components of the UPDRS scores as opposed to placebo. However, the use of CoQ10 is tolerated and seems to be safe but further studies are needed to validate this finding.


2018 ◽  
Vol 33 (5) ◽  
pp. 771-782 ◽  
Author(s):  
Tanya Simuni ◽  
Andrew Siderowf ◽  
Shirley Lasch ◽  
Chris S. Coffey ◽  
Chelsea Caspell-Garcia ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Marco J. Russo ◽  
Christina D. Orru ◽  
Luis Concha-Marambio ◽  
Simone Giaisi ◽  
Bradley R. Groveman ◽  
...  

AbstractAlpha-synuclein seed amplification assays (αSyn-SAAs) are promising diagnostic tools for Parkinson’s disease (PD) and related synucleinopathies. They enable detection of seeding-competent alpha-synuclein aggregates in living patients and have shown high diagnostic accuracy in several PD and other synucleinopathy patient cohorts. However, there has been confusion about αSyn-SAAs for their methodology, nomenclature, and relative accuracies when performed by various laboratories. We compared αSyn-SAA results obtained from three independent laboratories to evaluate reproducibility across methodological variations. We utilized the Parkinson’s Progression Markers Initiative (PPMI) cohort, with DATSCAN data available for comparison, since clinical diagnosis of early de novo PD is critical for neuroprotective trials, which often use dopamine transporter imaging to enrich their cohorts. Blinded cerebrospinal fluid (CSF) samples for a randomly selected subset of PPMI subjects (30 PD, 30 HC, and 20 SWEDD), from both baseline and year 3 collections for the PD and HC groups (140 total CSF samples) were analyzed in parallel by each lab according to their own established and optimized αSyn-SAA protocols. The αSyn-SAA results were remarkably similar across laboratories, displaying high diagnostic performance (sensitivity ranging from 86 to 96% and specificity from 93 to 100%). The assays were also concordant for samples with results that differed from clinical diagnosis, including 2 PD patients determined to be clinically inconsistent with PD at later time points. All three assays also detected 2 SWEDD subjects as αSyn-SAA positive who later developed PD with abnormal DAT-SPECT. These multi-laboratory results confirm the reproducibility and value of αSyn-SAA as diagnostic tools, illustrate reproducibility of the assay in expert hands, and suggest that αSyn-SAA has potential to provide earlier diagnosis with comparable or superior accuracy to existing methods.


2021 ◽  
Vol 10 (21) ◽  
pp. 5085
Author(s):  
Jia-Hung Chen ◽  
Lung Chan ◽  
Chen-Chih Chung ◽  
Oluwaseun Adebayo Bamodu ◽  
Chien-Tai Hong

Elevated blood neurofilament light chain (NfL), which indicates the loss of neuronal integrity, is increasingly implicated as a diagnostic and outcome-predicting biomarker for neurological diseases. However, its diagnostic implication for Parkinson’s disease (PD) remains unclear, with conflicting data reported by several studies. This may result from the demographic heterogeneity of the studied cohorts. The present study investigated the comparability of blood NfL between a domestic, single-centered PD cohort from Shuang Ho Hospital (SHH) in Taiwan, with the large international, multi-center cohort, Parkinson’s Progression Markers Initiative (PPMI). In the SHH PD cohort, with 61 people with PD (PwP) and 25 healthy non-PD controls, plasma NfL unexpectedly was significantly higher in the control group than PwP (14.42 ± 13.84 vs. 9.39 ± 6.91 pg/mL, p = 0.05). Interestingly, subgroup analysis revealed a non-significant difference of plasma NfL levels in male PwP compared with controls (8.58 ± 6.21 vs. 7.25 ± 4.43 pg/mL, p =0.575), whereas NfL levels were significantly lower in the female PwP group than in their healthy control peers (10.29 ± 7.62 vs. 17.79 ± 15.52 pg/mL, p = 0.033). Comparative analysis of the SHH and PPMI cohorts revealed a comparable gender-stratified distribution of blood NfL based on approximate theoretical quantiles. After adjusting for age and gender, no apparent difference in NfL value distribution was observed between the SHH and PPMI cohorts’ control or PD groups. Significant downregulation of blood NfL levels were positively correlated with a reduced probability of having a PD diagnosis in both cohorts. These results demonstrated that the adjustment for demographic background enhances comparability between cohorts, and may be required to eliminate covariate/confounder-associated conflict in blood NfL results between different PD studies. This experience may be beneficial to other researchers around the world who are saddled with limited study participants, especially as data from small cohort sizes are often at greater risk of being skewed by specific variables.


2021 ◽  
Vol 11 (2) ◽  
pp. 747-755
Author(s):  
Amir Ashraf-ganjouei ◽  
Kamyar Moradi ◽  
Mohammadhadi Aarabi ◽  
AmirHussein Abdolalizadeh ◽  
Seyedeh Zahra Kazemi ◽  
...  

Background: REM behavior disorder (RBD) can occur in the context of neurodegenerative alpha-synucleinopathies, such as Parkinson’s disease (PD). PD patients with RBD (PD-pRBD) represent more severe symptoms and signs compared with those without RBD (PD-nRBD). On another note, autonomic dysfunction in PD patients is categorized as one of the most prominent non-motor symptoms and has been lately the field of interest in research. Objective: In the current study, we longitudinally studied autonomic dysfunction in PD-pRBD and PD-nRBD groups. Method: This study was conducted on 420 drug-naïve PD patients selected from the Parkinson’s Progression Markers Initiative database. The RBD Screening Questionnaire was used to define the presence of probable RBD. SCOPA-AUT was used to assess autonomic dysfunction. Additionally, dopamine transporter deficits on [123I] FP-CIT SPECT imaging was performed for all of the patients. Results: Out of 420 PD patients, 158 individuals (37.6%) were considered to have probable RBD (PD-pRBD) and others without RBD (PD-nRBD). Except for pupillomotor function, all the autonomic symptoms were significantly more severe in PD-pRBD group. In PD-nRBD group, caudate striatal binding ratio was negatively correlated with SCOPA-AUT scores, while no significant correlation was observed in PD-pRBD group. Finally, there was a significant difference considering the longitudinal changes of SCOPA-AUT total between PD-pRBD and PD-nRBD groups, suggesting a more severe autonomic decline in PD-pRBD patients. Conclusion: Our results indicate that PD-pRBD patients have more severe autonomic dysfunction. These results support the theory that PD patients can be categorized based on the clinical presentation, possibly representing differences in the disease pathophysiology.


Sign in / Sign up

Export Citation Format

Share Document