scholarly journals Metal artifact reduction and tumor detection using photon-counting multi-energy computed tomography

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247355
Author(s):  
Chang-Lae Lee ◽  
Junyoung Park ◽  
Sangnam Nam ◽  
Jiyoung Choi ◽  
Yuna Choi ◽  
...  

Metal artifacts are considered a major challenge in computed tomography (CT) as these adversely affect the diagnosis and treatment of patients. Several approaches have been developed to address this problem. The present study explored the clinical potential of a novel photon-counting detector (PCD) CT system in reducing metal artifacts in head CT scans. In particular, we studied the recovery of an oral tumor region located under metal artifacts after correction. Three energy thresholds were used to group data into three bins (bin 1: low-energy, bin 2: middle-energy, and bin 3: high-energy) in the prototype PCD CT system. Three types of physical phantoms were scanned on the prototype PCD CT system. First, we assessed the accuracy of iodine quantification using iodine phantoms at varying concentrations. Second, we evaluated the performance of material decomposition (MD) and virtual monochromatic images (VMIs) using a multi-energy CT phantom. Third, we designed an ATOM phantom with metal insertions to verify the effect of the proposed metal artifact reduction. In particular, we placed an insertion-mimicking an iodine-enhanced oral tumor in the beam path of metallic objects. Normalized metal artifact reduction (NMAR) was performed for each energy bin image, followed by an image-based MD and VMI reconstruction. Image quality was analyzed quantitatively by contrast-to-noise ratio (CNR) measurements. The results of iodine quantification showed a good match between the true and measured iodine concentrations. Furthermore, as expected, the contrast between iodine and the surrounding material was higher in bin 1 image than in bin 3 image. On the other hand, the bin 3 image of the ATOM phantom showed fewer metal artifacts than the bin 1 image because of the higher photon energy. The result of quantitative assessment demonstrated that the 40-keV VMI (CNR: 20.6 ± 1.2) with NMAR and MD remarkably increased the contrast of the iodine-enhanced region compared with that of the conventional images (CNR: 10.4 ± 0.5) having 30 to 140 keV energy levels. The PCD-based multi-energy CT imaging has immense potential to maximize the contrast of the target tissue and reduce metal artifacts simultaneously. We believe that it would open the door to novel applications for the diagnosis and treatment of several diseases.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
T. D. Do ◽  
S. Sawall ◽  
S. Heinze ◽  
T. Reiner ◽  
C. H. Ziener ◽  
...  

AbstractAn evaluation of energy thresholding and acquisition mode for metal artifact reduction in Photon-counting detector CT (PCD-CT) compared to conventional energy-integrating detector CT (EID-CT) was performed. Images of a hip prosthesis phantom placed in a water bath were acquired on a scanner with PCD-CT and EID-CT (tube potentials: 100, 120 and 140 kVp) and energy thresholds (above 55–75 keV) in Macro and Chess mode. Only high-energy threshold images (HTI) were used. Metal artifacts were quantified by a semi-automated segmentation algorithm, calculating artifact volumes, means and standard deviations of CT numbers. Images of a human cadaver with hip prosthesis were acquired on the PCD-CT in Macro mode as proof-of-concept. Images at 140 kVp showed less metal artifacts than 120 kVp or 100 kVp. HTI (70, 75 keV) had fewer artifacts than low energy thresholds (55, 60, 65 keV). Fewer artifacts were observed in the Macro-HTI (8.9–13.3%) for cortical bone compared to Chess-HTI (9.4–19.1%) and EID-CT (10.7–19.0%) whereas in bone marrow Chess-HTI (19.9–45.1%) showed less artifacts compared to Macro-HTI (21.9–38.3%) and EID-CT (36.4–54.9%). Noise for PCD-CT (56–81 HU) was higher than EID-CT (33–36 HU) irrespective of tube potential. High-energy thresholding could be used for metal artifact reduction in PCD-CT, but further investigation of acquisition modes depending on target structure is required.


2021 ◽  
Vol 24 ◽  
pp. 100573
Author(s):  
Goli Khaleghi ◽  
Mohammad Hosntalab ◽  
Mahdi Sadeghi ◽  
Reza Reiazi ◽  
Seied Rabi Mahdavi

2017 ◽  
Vol 41 (3) ◽  
pp. 446-454 ◽  
Author(s):  
Julien Pagniez ◽  
Louise Legrand ◽  
Suonita Khung ◽  
Jean-Baptiste Faivre ◽  
Alain Duhamel ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Carsten Hackenbroch ◽  
Simone Schüle ◽  
Daniel Halt ◽  
Laura Zengerle ◽  
Meinrad Beer

2020 ◽  
Author(s):  
Fangling Zhang ◽  
Xiaoling Zhang ◽  
Ling Ma ◽  
Ruocheng Li ◽  
Zhaohui Zhang ◽  
...  

Abstract Background: To evaluate the effectiveness of the single energy metal artifact reduction (SEMAR) algorithm with a second-generation 320-row multi-detector computed tomography (MDCT) on complications and tumor recurrence detection in patients with hip tumor prostheses.Methods: From February 2016 to June 2019, 31consecutive patients with tumor prostheses of the hip joint underwent CT scans. Lesions were confirmed by histology or clinical and imaging follow-up. Images were reconstructed using 2 methods: iterative (IR) algorithm alone and SEMAR algorithm (IR+ SEMAR). Two radiologists graded the image quality visually by a 6-point (from 0 to 5) ordinal scale. Standard deviations (SD) of CT attenuation value defined as the artifact index (AI) were compared between the two reconstructed methods. Paired sample t-test was adopted to compare the AI values on IR and SEMAR images. Wilcoxon matched-pairs signed rank test was performed to compare the visual scores on IR and SEMAR images. A p- value less than 0.05 was considered statistically significant. Results: The artifacts of the SEMAR images were reduced compared to the Non-SEMAR images (113.94 ±128.54 vs 35.98 ± 53.75HU,t=2.867, P < 0.05). 20 and 16 more lesions were detected by observer 1 and observer 2 with SEMAR algorithm respectively. The mean scores of lesions without SEMAR were 1.39 ± 1.45 (observer 1) and 1.55± 1.34 (observer 2); with SEMAR, the scores were significantly higher, 4.42±0.56 (z=-4.752, p < 0.001) and 4.54± 0.72 (z=-4.837, p < 0.001) respectively. Conclusion: The SEMAR algorithm can effectively reduce metal artifacts in patients with hip tumor prostheses and increase the diagnostic accuracy of prosthetic complications and tumor recurrence.


2012 ◽  
Vol 39 (11) ◽  
pp. 7042-7054 ◽  
Author(s):  
Bärbel Kratz ◽  
Imke Weyers ◽  
Thorsten M. Buzug

2018 ◽  
Vol 24 (3) ◽  
pp. 303-308 ◽  
Author(s):  
Yukiko Enomoto ◽  
Keita Yamauchi ◽  
Takahiko Asano ◽  
Katharina Otani ◽  
Toru Iwama

Background and purpose C-arm cone-beam computed tomography (CBCT) has the drawback that image quality is degraded by artifacts caused by implanted metal objects. We evaluated whether metal artifact reduction (MAR) prototype software can improve the subjective image quality of CBCT images of patients with intracranial aneurysms treated with coils or clips. Materials and methods Forty-four patients with intracranial aneurysms implanted with coils (40 patients) or clips (four patients) underwent one CBCT scan from which uncorrected and MAR-corrected CBCT image datasets were reconstructed. Three blinded readers evaluated the image quality of the image sets using a four-point scale (1: Excellent, 2: Good, 3: Poor, 4: Bad). The median scores of the three readers of uncorrected and MAR-corrected images were compared with the paired Wilcoxon signed-rank and inter-reader agreement of change scores was assessed by weighted kappa statistics. The readers also recorded new clinical findings, such as intracranial hemorrhage, air, or surrounding anatomical structures on MAR-corrected images. Results The image quality of MAR-corrected CBCT images was significantly improved compared with the uncorrected CBCT image ( p < 0.001). Additional clinical findings were seen on CBCT images of 70.4% of patients after MAR correction. Conclusion MAR software improved image quality of CBCT images degraded by metal artifacts.


Sign in / Sign up

Export Citation Format

Share Document