scholarly journals Effects of precipitation change and nitrogen addition on the composition, diversity, and molecular ecological network of soil bacterial communities in a desert steppe

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248194
Author(s):  
Meiqing Jia ◽  
Zhiwei Gao ◽  
Huijun Gu ◽  
Chenyu Zhao ◽  
Meiqi Liu ◽  
...  

Currently, the impact of changes in precipitation and increased nitrogen(N) deposition on ecosystems has become a global problem. In this study, we conducted a 8-year field experiment to evaluate the effects of interaction between N deposition and precipitation change on soil bacterial communities in a desert steppe using high-throughput sequencing technology. The results revealed that soil bacterial communities were sensitive to precipitation addition but were highly tolerant to precipitation reduction. Reduced precipitation enhanced the competitive interactions of soil bacteria and made the ecological network more stable. Nitrogen addition weakened the effect of water addition in terms of soil bacterial diversity and community stability, and did not have an interactive influence. Moreover, decreased precipitation and increased N deposition did not have a superimposed effect on soil bacterial communities in the desert steppe. Soil pH, moisture content, and NH4+-N and total carbon were significantly related to the structure of bacterial communities in the desert steppe. Based on network analysis and relative abundance, we identified Actinobacteria, Proteobacteria, Acidobacteria and Cyanobacteria members as the most important keystone bacteria that responded to precipitation changes and N deposition in the soil of the desert steppe. In summary, we comprehensively analyzed the responses of the soil bacterial community to precipitation changes and N deposition in a desert steppe, which provides a model for studying the effects of ecological factors on bacterial communities worldwide.

2021 ◽  
Vol 12 ◽  
Author(s):  
Tingwen Huang ◽  
Weiguo Liu ◽  
Xi-En Long ◽  
Yangyang Jia ◽  
Xiyuan Wang ◽  
...  

Bacterial communities in soil serve an important role in controlling terrestrial biogeochemical cycles and ecosystem processes. Increased nitrogen (N) deposition in Northwest China is generating quantifiable changes in many elements of the desert environment, but the impacts of N deposition, as well as seasonal variations, on soil bacterial community composition and structure are poorly understood. We used high-throughput sequencing of bacterial 16S rRNA genes from Gurbantünggüt Desert moss crust soils to study the impacts of N addition on soil bacterial communities in March, May, and November. In November, we discovered that the OTU richness and diversity of soil bacterial community dropped linearly with increasing N input. In November and March, the diversity of the soil bacterial community decreased significantly in the medium-N and high-N treatments. In May, N addition caused a substantial change in the makeup of the soil bacterial composition, while the impacts were far less apparent in November and March. Furthermore, the relative abundance of major bacterial phyla reacted non-linearly to N addition, with high-N additions decreasing the relative richness of Proteobacteria, Bacteroidetes, and Acidobacteria while increasing the relative abundance of Actinobacteria and Chloroflexi. We also discovered that seasonality, as characterized by changes in soil moisture, pH, SOC, and AK content, had a significant impact on soil bacterial communities. Significant variations in the makeup of the community were discovered at the phylum and genus levels throughout the various months. In May, the variety of soil bacterial community was at its peak. Further investigation showed that the decrease in soil bacterial diversity was mostly attributed to a drop in soil pH. These results indicated that the impact of N deposition on the soil bacterial community was seasonally dependent, suggesting that future research should evaluate more than one sample season at the same time.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu-Te Lin ◽  
Yu-Fei Lin ◽  
Isheng J. Tsai ◽  
Ed-Haun Chang ◽  
Shih-Hao Jien ◽  
...  

2021 ◽  
Vol 309 ◽  
pp. 107285
Author(s):  
Mengyu Gao ◽  
Jinfeng Yang ◽  
Chunmei Liu ◽  
Bowen Gu ◽  
Meng Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document