scholarly journals Different Responses of Soil Bacterial Communities to Nitrogen Addition in Moss Crust

2021 ◽  
Vol 12 ◽  
Author(s):  
Tingwen Huang ◽  
Weiguo Liu ◽  
Xi-En Long ◽  
Yangyang Jia ◽  
Xiyuan Wang ◽  
...  

Bacterial communities in soil serve an important role in controlling terrestrial biogeochemical cycles and ecosystem processes. Increased nitrogen (N) deposition in Northwest China is generating quantifiable changes in many elements of the desert environment, but the impacts of N deposition, as well as seasonal variations, on soil bacterial community composition and structure are poorly understood. We used high-throughput sequencing of bacterial 16S rRNA genes from Gurbantünggüt Desert moss crust soils to study the impacts of N addition on soil bacterial communities in March, May, and November. In November, we discovered that the OTU richness and diversity of soil bacterial community dropped linearly with increasing N input. In November and March, the diversity of the soil bacterial community decreased significantly in the medium-N and high-N treatments. In May, N addition caused a substantial change in the makeup of the soil bacterial composition, while the impacts were far less apparent in November and March. Furthermore, the relative abundance of major bacterial phyla reacted non-linearly to N addition, with high-N additions decreasing the relative richness of Proteobacteria, Bacteroidetes, and Acidobacteria while increasing the relative abundance of Actinobacteria and Chloroflexi. We also discovered that seasonality, as characterized by changes in soil moisture, pH, SOC, and AK content, had a significant impact on soil bacterial communities. Significant variations in the makeup of the community were discovered at the phylum and genus levels throughout the various months. In May, the variety of soil bacterial community was at its peak. Further investigation showed that the decrease in soil bacterial diversity was mostly attributed to a drop in soil pH. These results indicated that the impact of N deposition on the soil bacterial community was seasonally dependent, suggesting that future research should evaluate more than one sample season at the same time.

Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 51 ◽  
Author(s):  
Jiangmei Qiu ◽  
Jianhua Cao ◽  
Gaoyong Lan ◽  
Yueming Liang ◽  
Hua Wang ◽  
...  

Land use patterns can change the structure of soil bacterial communities. However, there are few studies on the effects of land use patterns coupled with soil depth on soil bacterial communities in the karst graben basin of Yunnan province, China. Consequently, to reveal the structure of the soil bacterial community at different soil depths across land use changes in the graben basins of the Yunnan plateau, the relationship between soil bacterial communities and soil physicochemical properties was investigated for a given area containing woodland, shrubland, and grassland in Yunnan province by using next-generation sequencing technologies coupled with soil physicochemical analysis. Our results indicated that the total phosphorus (TP), available potassium (AK), exchangeable magnesium (E-Mg), and electrical conductivity (EC) in the grassland were significantly higher than those in the woodland and shrubland, yet the total nitrogen (TN) and soil organic carbon (SOC) in the woodland were higher than those in the shrubland and grassland. Proteobacteria, Verrucomicrobia, and Acidobacteria were the dominant bacteria, and their relative abundances were different in the three land use types. SOC, TN, and AK were the most important factors affecting soil bacterial communities. Land use exerts strong effects on the soil bacterial community structure in the soil’s surface layer, and the effects of land use attenuation decrease with soil depth. The nutrient content of the soil surface layer was higher than that of the deep layer, which was more suitable for the survival and reproduction of bacteria in the surface layer.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12105
Author(s):  
Fangnan Xiao ◽  
Yuanyuan Li ◽  
Guifang Li ◽  
Yaling He ◽  
Xinhua Lv ◽  
...  

Tamarix is a dominant species in the Tarim River Basin, the longest inland river in China. Tamarix plays an important role in the ecological restoration of this region. In this study, to investigate the soil bacterial community diversity in Tamarix shrubs, we collected soil samples from the inside and edge of the canopy and the edge of nebkhas and non-nebkhas Tamarix shrubs located near the Yingsu section in the lower reaches of Tarim River. High throughput sequencing technology was employed to discern the composition and function of soil bacterial communities in nebkhas and non-nebkhas Tamarix shrubs. Besides, the physicochemical properties of soil and the spatial distribution characteristics of soil bacteria and their correlation were analyzed. The outcomes of this analysis demonstrated that different parts of Tamarix shrubs had significantly different effects on soil pH, total K (TK), available K (AK), ammonium N (NH4+), and available P (AP) values (P < 0.05), but not on soil moisture (SWC), total salt (TDS), electrical conductivity (EC), organic matter (OM), total N (TN), total P (TP), and nitrate N (NO3−) values. The soil bacterial communities identified in Tamarix shrubs were categorized into two kingdoms, 71 phyla, 161 classes, 345 orders, 473 families, and 702 genera. Halobacterota, unidentified bacteria, and Proteobacteria were found to be dominant phyla. The correlation between the soil physicochemical factors and soil bacterial community was analyzed, and as per the outcomes OM, AK, AP, EC, and NH4+ were found to primarily affect the structure of the soil bacterial community. SWC, TK and pH were positively correlated with each other, but negatively correlated with other soil factors. At the phyla level, a significantly positive correlation was observed between the Halobacterota and AP, OM as well as Bacteroidota and AK (P < 0.01), but a significantly negative correlation was observed between the Chloroflexi and AK, EC (P < 0.01). The PICRUSt software was employed to predict the functional genes. A total of 6,195 KEGG ortholog genes were obtained. The function of soil bacteria was annotated, and six metabolic pathways in level 1, 41 metabolic pathways in level 2, and 307 metabolic pathways in level 3 were enriched, among which the functional gene related to metabolism, genetic information processing, and environmental information processing was found to have the dominant advantage. The results showed that the nebkhas and canopy of Tamarix shrubs had a certain enrichment effect on soil nutrients content, and bacterial abundance and significant effects on the structure and function of the soil bacterial community.


Author(s):  
Yinhong Hu ◽  
Weiwei Yu ◽  
Bowen Cui ◽  
Yuanyuan Chen ◽  
Hua Zheng ◽  
...  

Human disturbance and vegetation are known to affect soil microorganisms. However, the interacting effects of pavement and plant species on soil bacterial communities have received far less attention. In this study, we collected soil samples from pine (Pinus tabuliformis Carr.), ash (Fraxinus chinensis), and maple (Acer truncatum Bunge) stands that grew in impervious, pervious, and no pavement blocks to investigate the way pavement, tree species, and their interaction influence soil bacterial communities by modifying soil physicochemical properties. Soil bacterial community composition and diversity were evaluated by bacterial 16S amplicon sequencing. The results demonstrated that soil bacterial community composition and diversity did differ significantly across pavements, but not with tree species. The difference in soil bacterial community composition across pavements was greater in pine stands than ash and maple stands. Soil bacterial diversity and richness indices decreased beneath impervious pavement in pine stands, and only bacterial richness indices decreased markedly in ash stands, but neither showed a significant difference across pavements in maple stands. In addition, bacterial diversity did not differ dramatically between pervious pavement and no pavement soil. Taken together, these results suggest that pavement overwhelmed the effects of tree species on soil bacterial communities, and had a greater effect on soil bacterial communities in pine stands, followed by ash and maple stands. This study highlights the importance of anthropogenic disturbance, such as pavement, which affects soil microbial communities.


2020 ◽  
Author(s):  
Pamela Bhattacharya ◽  
Samrat Mondol ◽  
Gautam Talukdar ◽  
Gopal Singh Rawat

AbstractSoil heterotrophic respiration-driven CO2 emissions, its impact on global warming and the mechanistic roles of soil bacterial communities in this process have been an area of active research. However, our knowledge regarding the effects of environmental changes on soil bacterial communities is limited. To this end, the climate-sensitive high-altitude alpine ecosystems offer ideal opportunities to investigate relationship between climate change and bacterial communities. While data from several high-altitude mountain regions suggest that local environment factors and geological patterns govern bacterial communities, no information is available from the Himalaya. Here we provide baseline information on seasonal soil bacterial community diversity and composition along a 3200-4000 m elevation gradient covering four alpine habitats (subalpine forest, alpine scrub, alpine meadow and moraine) in Gangotri National Park, western Himalaya. Bacterial metabarcoding data from 36 field-collected samples showed no elevation trend in the bacterial richness and a non-monotonous decrease in their diversity. Further, their community diversity and composition varied significantly among habitats along elevation but were stable seasonally within each habitat. The richness was primarily influenced by soil inorganic carbon (SOC) and total nitrogen (TN), whereas temperature, SOC and TN affected diversity and composition patterns. Given the importance of the Himalaya in the context of global carbon cycle this information will help in accurate modeling of climate adaptation scenarios of bacterial niches and their downstream impacts towards climate warming.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1329
Author(s):  
Zhi Yu ◽  
Kunnan Liang ◽  
Guihua Huang ◽  
Xianbang Wang ◽  
Mingping Lin ◽  
...  

Soil bacterial communities play crucial roles in ecosystem functions and biogeochemical cycles of fundamental elements and are sensitive to environmental changes. However, the response of soil bacterial communities to chronosequence in tropical ecosystems is still poorly understood. This study characterized the structures and co-occurrence patterns of soil bacterial communities in rhizosphere and bulk soils along a chronosequence of teak plantations and adjacent native grassland as control. Stand ages significantly shifted the structure of soil bacterial communities but had no significant impact on bacterial community diversity. Bacterial community diversity in bulk soils was significantly higher than that in rhizosphere soils. The number of nodes and edges in the bacterial co-occurrence network first increased and then decreased with the chronosequence. The number of strongly positive correlations per network was much higher than negative correlations. Available potassium, total potassium, and available phosphorus were significant factors influencing the structure of the bacterial community in bulk soils. In contrast, urease, total potassium, pH, and total phosphorus were significant factors affecting the structure of the bacterial community in the rhizosphere soils. These results indicate that available nutrients in the soil are the main drivers regulating soil bacterial community variation along a teak plantation chronosequence.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7304
Author(s):  
Xingjia Xiang ◽  
Sean M. Gibbons ◽  
He Li ◽  
Haihua Shen ◽  
Haiyan Chu

Background Changes in aboveground community composition and diversity following shrub encroachment have been studied extensively. Recently, shrub encroachment was associated with differences in belowground bacterial communities relative to non-encroached grassland sites hundreds of meters away. This spatial distance between grassland and shrub sites left open the question of how soil bacterial communities associated with different vegetation types might differ within the same plot location. Methods We examined soil bacterial communities between shrub-encroached and adjacent (one m apart) grassland soils in Chinese Inner Mongolian, using high-throughput sequencing method (Illumina, San Diego, CA, USA). Results Shrub-encroached sites were associated with dramatic restructuring of soil bacterial community composition and predicted metabolic function, with significant increase in bacterial alpha-diversity. Moreover, bacterial phylogenic structures showed clustering in both shrub-encroached and grassland soils, suggesting that each vegetation type was associated with a unique and defined bacterial community by niche filtering. Finally, soil organic carbon (SOC) was the primary driver varied with shifts in soil bacterial community composition. The encroachment was associated with elevated SOC, suggesting that shrub-mediated shifts in SOC might be responsible for changes in belowground bacterial community. Discussion This study demonstrated that shrub-encroached soils were associated with dramatic restructuring of bacterial communities, suggesting that belowground bacterial communities appear to be sensitive indicators of vegetation type. Our study indicates that the increased shrub-encroached intensity in Inner Mongolia will likely trigger large-scale disruptions in both aboveground plant and belowground bacterial communities across the region.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 299 ◽  
Author(s):  
Pengxiang Gao ◽  
Xiaofeng Zheng ◽  
Lai Wang ◽  
Bin Liu ◽  
Shuoxin Zhang

Agroforestry (tree-based intercropping) is regarded as a promising practice in sustainable agricultural management. However, the impacts of converting cropland to an agroforestry system on microbial communities remain poorly understood. In this study, we assessed the soil bacterial communities in conventional wheat monoculture systems and a chronosequence (5–14 years) walnut-wheat agroforestry system through the high-throughput sequencing of 16S rRNA genes to investigate the effect of agroforestry age on soil bacterial communities and the correlation between soil properties and bacterial communities in the agroecosystem. Our results demonstrate that establishing and developing walnut tree-based agroforestry increased soil bacterial diversity and changed bacterial community structure. Firmicutes, Proteobacteria, Actinobacteria and Acidobacteria were the dominant soil bacterial phyla and Bacillus was the dominant genus. Crop monoculture systems were characterized by the Bacillus (Firmicutes)-dominated microbial community. The relative abundance of Bacillus decreased with agroforestry age; however, subgroups of Proteobacteria and Actinobacteria increased. Of the selected soil physicochemical properties, soil pH and bulk density were significantly correlated with bacterial alpha diversity, and soil pH and organic carbon were the principal drivers in shaping the soil microbial structure as revealed by redundancy analysis (RDA).


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiang Li ◽  
Ang Song ◽  
Hui Yang ◽  
Werner E. G. Müller

Microorganisms play critical roles in belowground ecosystems, and karst rocky desertification (KRD) control affects edaphic properties and vegetation coverage. However, the relationship between KRD control and soil bacterial communities remains unclear. 16S rRNA gene next-generation sequencing was used to investigate soil bacterial community structure, composition, diversity, and co-occurrence network from five ecological types in KRD control area. Moreover, soil physical-chemical properties and soil stoichiometry characteristics of carbon, nitrogen and phosphorus were analyzed. Soil N and P co-limitation decreased in the contribution of the promotion of KRD control on edaphic properties. Though soil bacterial communities appeared strongly associated with soil pH, soil calcium, soil phosphorus and plant richness, the key factor to determine their compositions was the latter via changed edaphic properties. The co-occurrence network analysis indicated that soil bacterial network complexity in natural ecosystem was higher than that in additional management ecosystem. Candidatus Udaeobacter, Chthoniobacterales, and Pedosphaeraceae were recognized as the key taxa maintaining karst soil ecosystems in KRD control area. Our results indicate that natural recovery is the suitable way for restoration and rehabilitation of degraded ecosystems, and thus contribute to the ongoing endeavor to appraise the interactions among soil-plant ecological networks.


2021 ◽  
Vol 11 (3) ◽  
pp. 918
Author(s):  
Lingzi Mo ◽  
Augusto Zanella ◽  
Xiaohua Chen ◽  
Bin Peng ◽  
Jiahui Lin ◽  
...  

Continuing nitrogen (N) deposition has a wide-ranging impact on terrestrial ecosystems. To test the hypothesis that, under N deposition, bacterial communities could suffer a negative impact, and in a relatively short timeframe, an experiment was carried out for a year in an urban area featuring a cover of Bermuda grass (Cynodon dactylon) and simulating environmental N deposition. NH4NO3 was added as external N source, with four dosages (N0 = 0 kg N ha−2 y−1, N1 = 50 kg N ha−2 y−1, N2 = 100 kg N ha−2 y−1, N3 = 150 kg N ha−2 y−1). We analyzed the bacterial community composition after soil DNA extraction through the pyrosequencing of the 16S rRNA gene amplicons. N deposition resulted in soil bacterial community changes at a clear dosage-dependent rate. Soil bacterial diversity and evenness showed a clear trend of time-dependent decline under repeated N application. Ammonium nitrogen enrichment, either directly or in relation to pH decrease, resulted in the main environmental factor related to the shift of taxa proportions within the urban green space soil bacterial community and qualified as a putative important driver of bacterial diversity abatement. Such an impact on soil life induced by N deposition may pose a serious threat to urban soil ecosystem stability and surrounding areas.


2009 ◽  
Vol 75 (15) ◽  
pp. 5111-5120 ◽  
Author(s):  
Christian L. Lauber ◽  
Micah Hamady ◽  
Rob Knight ◽  
Noah Fierer

ABSTRACT Soils harbor enormously diverse bacterial populations, and soil bacterial communities can vary greatly in composition across space. However, our understanding of the specific changes in soil bacterial community structure that occur across larger spatial scales is limited because most previous work has focused on either surveying a relatively small number of soils in detail or analyzing a larger number of soils with techniques that provide little detail about the phylogenetic structure of the bacterial communities. Here we used a bar-coded pyrosequencing technique to characterize bacterial communities in 88 soils from across North and South America, obtaining an average of 1,501 sequences per soil. We found that overall bacterial community composition, as measured by pairwise UniFrac distances, was significantly correlated with differences in soil pH (r = 0.79), largely driven by changes in the relative abundances of Acidobacteria, Actinobacteria, and Bacteroidetes across the range of soil pHs. In addition, soil pH explains a significant portion of the variability associated with observed changes in the phylogenetic structure within each dominant lineage. The overall phylogenetic diversity of the bacterial communities was also correlated with soil pH (R2 = 0.50), with peak diversity in soils with near-neutral pHs. Together, these results suggest that the structure of soil bacterial communities is predictable, to some degree, across larger spatial scales, and the effect of soil pH on bacterial community composition is evident at even relatively coarse levels of taxonomic resolution.


Sign in / Sign up

Export Citation Format

Share Document