scholarly journals Brain mass explains prey size selection better than beak, gizzard and body size in a benthivorous duck species

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248615
Author(s):  
Karsten Laursen ◽  
Anders Pape Møller

Prey size selection in some bird species is determined by the size of the beak. However, we assumed for bird species swallowing whole prey that a cognitive process may be involved. As cognitive feature, brain mass was used. We hypothesized that the mass of the brain was more strongly positively correlated with prey size than morphological features such as beak volume, gizzard mass and body mass. We tested this hypothesis on eiders Somateria mollissima that swallow the prey whole, by using mean and maximum size of nine prey categories. Eiders were collected at the main wintering grounds in Denmark. As index of brain mass we used head volume, which is positively correlated with brain mass (r2 = 0.73). Head volume of eiders was significantly, positive correlated with mean and maximum size of blue mussels Mytilus edulis, razor clams Ensis directus and all prey sizes combined and the maximum size of draft whelk Hinia reticulata and conch Buccinum undatum. Gizzard mass was also significantly positively correlated with maximum size of draft whelk and conch. Beak volume and body mass was not significantly correlated with the size of any of the nine food items. Analyses of effect size for organs showed that head volume was positively related to prey size, whereas beak volume, gizzard mass and body mass did not show a significant positive relationship. These results indicate that cognitive processes connected to brain mass may be involved in prey size selection by eiders.

2007 ◽  
Vol 42 (2) ◽  
pp. 167-172 ◽  
Author(s):  
David P. Padilla ◽  
Manuel Nogales ◽  
Patricia Marrero

Author(s):  
Jorge Tobajas ◽  
Carlos Rouco ◽  
Javier Fernandez-de-Simon ◽  
Francisco Díaz-Ruiz ◽  
Francisca Castro ◽  
...  

2015 ◽  
Vol 93 (10) ◽  
pp. 755-764 ◽  
Author(s):  
A. Viain ◽  
M. Guillemette ◽  
J.-P.L. Savard

Body and organ dynamics, during remigial moult, have been mainly explored on geese, dabbling ducks, and foot-propelled diving ducks, but weakly on sea ducks. This study investigated the internal changes in a wing–foot-propelled sea duck to determine the adaptive strategies implemented. Forty-five male Common Eiders (Atlantic) (Somateria mollissima dresseri Sharpe, 1871), collected in the Gulf of St. Lawrence, were dissected; their body mass, muscle mass, and organ sizes were measured. We tested three hypotheses: (1) S. m. dresseri use a strategic reduction of body mass to reduce the flightlessness duration; (2) organs will exhibit changes consistent with a trade-off between function and maintenance to save and reallocate energy and proteins to feather growth; (3) S. m. dresseri would show lower flight muscle reduction than foot-propelled diving ducks. Somateria mollissima dresseri did not lose body mass, which does not support the first hypothesis. Atrophy of the heart followed by hypertrophy and opposite changes in leg muscle mass and gizzard mass are consistent with the second hypothesis. Flight muscle mass showed lower variations than in other ducks, validating the third hypothesis. We also suggest that the lipid depletion observed early in the moult could be a strategy to reduce foraging effort and minimize the risk of damaging the growing feathers.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Adam Hartstone-Rose ◽  
Jonathan M. G. Perry

In a recent study, we quantified the scaling of ingested food size (Vb )—the maximum size at which an animal consistently ingests food whole—and found that Vb scaled isometrically between species of captive strepsirrhines. The current study examines the relationship between Vb and body size within species with a focus on the frugivorous Varecia rubra and the folivorous Propithecus coquereli. We found no overlap in Vb between the species (all V. rubra ingested larger pieces of food relative to those eaten by P. coquereli), and least-squares regression of Vb and three different measures of body mass showed no scaling relationship within each species. We believe that this lack of relationship results from the relatively narrow intraspecific body size variation and seemingly patternless individual variation in Vb within species and take this study as further evidence that general scaling questions are best examined interspecifically rather than intraspecifically.


1990 ◽  
Vol 35 (7) ◽  
pp. 1429-1436 ◽  
Author(s):  
Thomas H. Chrzanowski ◽  
Karel Šimek
Keyword(s):  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10868
Author(s):  
Beata Grzywacz ◽  
Piotr Skórka

Why do some species occur in small, restricted areas, while others are distributed globally? Environmental heterogeneity increases with area and so does the number of species. Hence, diverse biotic and abiotic conditions across large ranges may lead to specific adaptations that are often linked to a species’ genome size and chromosome number. Therefore, a positive association between genome size and geographic range is anticipated. Moreover, high cognitive ability in organisms would be favored by natural selection to cope with the dynamic conditions within large geographic ranges. Here, we tested these hypotheses in birds—the most mobile terrestrial vertebrates—and accounted for the effects of various confounding variables, such as body mass, relative brain mass, and geographic latitude. Using phylogenetic generalized least squares and phylogenetic confirmatory path analysis, we demonstrated that range size is positively associated with bird genome size but probably not with chromosome number. Moreover, relative brain mass had no effect on range size, whereas body mass had a possible weak and negative effect, and range size was larger at higher geographic latitudes. However, our models did not fully explain the overall variation in range size. Hence, natural selection may impose larger genomes in birds with larger geographic ranges, although there may be additional explanations for this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document