scholarly journals Neural correlates of confusability in recognition of morphologically complex Korean words

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249111
Author(s):  
Jeahong Kim ◽  
JeYoung Jung ◽  
Kichun Nam

When people confuse and reject a non-word that is created by switching two adjacent letters from an actual word, is called the transposition confusability effect (TCE). The TCE is known to occur at the very early stages of visual word recognition with such unit exchange as letters or syllables, but little is known about the brain mechanisms of TCE. In this study, we examined the neural correlates of TCE and the effect of a morpheme boundary placement on TCE. We manipulated the placement of a morpheme boundary by exchanging places of two syllables embedded in Korean morphologically complex words made up of lexical morpheme and grammatical morpheme. In the two experimental conditions, the transposition syllable within-boundary condition (TSW) involved exchanging two syllables within the same morpheme, whereas the across-boundary condition (TSA) involved the exchange of syllables across the stem and grammatical morpheme boundary. During fMRI, participants performed the lexical decision task. Behavioral results revealed that the TCE was found in TSW condition, and the morpheme boundary, which is manipulated in TSA, modulated the TCE. In the fMRI results, TCE induced activation in the left inferior parietal lobe (IPL) and intraparietal sulcus (IPS). The IPS activation was specific to a TCE and its strength of activation was associated with task performance. Furthermore, two functional networks were involved in the TCE: the central executive network and the dorsal attention network. Morpheme boundary modulation suppressed the TCE by recruiting the prefrontal and temporal regions, which are the key regions involved in semantic processing. Our findings propose the role of the dorsal visual pathway in syllable position processing and that its interaction with other higher cognitive systems is modulated by the morphological boundary in the early phases of visual word recognition.

2021 ◽  
pp. 174702182110308
Author(s):  
Simone Sulpizio ◽  
Remo Job ◽  
Paolo Leoni ◽  
Michele Scaltritti

We investigated whether semantic interference occurring during visual word recognition is resolved using domain-general control mechanism or using more specific mechanisms related to semantic processing. We asked participants to perform a lexical decision task with taboo stimuli, which induce semantic interference, as well as well as a semantic Stroop task and a Simon task, intended as benchmarks of linguistic-semantic and non-linguistic interference, respectively. Using a correlational approach, we investigated potential similarities between effects produced in the three tasks, both at the level of overall means and as a function of response speed (delta-plot analysis). Correlations selectively surfaced between the lexical decision and the semantic Stroop task. These findings suggest that, during visual word recognition, semantic interference is controlled by semantic-specific mechanisms, which intervene to face prepotent but task-irrelevant semantic information interfering with the accomplishment of the task's goal.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 304
Author(s):  
Kelsey Cnudde ◽  
Sophia van Hees ◽  
Sage Brown ◽  
Gwen van der Wijk ◽  
Penny M. Pexman ◽  
...  

Visual word recognition is a relatively effortless process, but recent research suggests the system involved is malleable, with evidence of increases in behavioural efficiency after prolonged lexical decision task (LDT) performance. However, the extent of neural changes has yet to be characterized in this context. The neural changes that occur could be related to a shift from initially effortful performance that is supported by control-related processing, to efficient task performance that is supported by domain-specific processing. To investigate this, we replicated the British Lexicon Project, and had participants complete 16 h of LDT over several days. We recorded electroencephalography (EEG) at three intervals to track neural change during LDT performance and assessed event-related potentials and brain signal complexity. We found that response times decreased during LDT performance, and there was evidence of neural change through N170, P200, N400, and late positive component (LPC) amplitudes across the EEG sessions, which suggested a shift from control-related to domain-specific processing. We also found widespread complexity decreases alongside localized increases, suggesting that processing became more efficient with specific increases in processing flexibility. Together, these findings suggest that neural processing becomes more efficient and optimized to support prolonged LDT performance.


2009 ◽  
Vol 11 (2) ◽  
pp. 167-190 ◽  
Author(s):  
Martina Penke ◽  
Kathrin Schrader

The goal of this paper is to investigate the role phonology plays for visual word recognition and the change this role undergoes in the course of reading acquisition by providing data on German readers at different stages of reading proficiency. Erroneous responses in a semantic decision task, which employs words that are either homophonous or graphemically similar to a word of a previously introduced semantic field, were compared at different stages of reading development (i.e. in second- and fourth-grade school children and adults). In all age groups, subjects committed significantly more errors with homophones than with words graphemically similar to a word related to the given semantic field. The results show that phonological recoding plays an important role for visual word recognition not only with beginners but also in skilled readers and, hence, corroborate phonological models of reading.


2017 ◽  
Vol 40 (2) ◽  
pp. 319-339
Author(s):  
Pauline Schröter ◽  
Sascha Schroeder

AbstractInvestigating the impact of linguistic characteristics on visual word recognition in children, we studied whether differences in native (L1) and second language (L2) processing already emerge at the beginning of reading development. German elementary school students in grades 2 to 6 completed a battery of standardized tests and a lexical decision task (LDT). Though L1 speakers outperformed L2 speakers on German skills, groups did not differ in their overall performance on the LDT. However, results from mixed-effect models revealed greater effects for word frequency and length in L2 over L1 speakers, indicating qualitative differences in the sensitivity to linguistic information between groups. This distinction persisted across all grades and after controlling for differences in vocabulary size and reading fluency. Findings extend evidence provided for adult L2 processing, suggesting that varying language exposure shapes the development of the word-recognition system already in the early stages of reading development.


Psihologija ◽  
2010 ◽  
Vol 43 (1) ◽  
pp. 103-116 ◽  
Author(s):  
Jelena Havelka ◽  
Clive Frankish

Case mixing is a technique that is used to investigate the perceptual processes involved in visual word recognition. Two experiments examined the effect of case mixing on lexical decision latencies. The aim of these experiments was to establish whether different case mixing patterns would interact with the process of appropriate visual segmentation and phonological assembly in word reading. In the first experiment, case mixing had a greater effect on response times to words when it led to visual disruption of the multi-letter graphemes (MLGs) as well as the overall word shape (e.g. pLeAd), compared to when it disrupted overall word shape only (e.g. plEAd). A second experiment replicated this finding with words in which MLGs represent either the vowel (e.g. bOaST vs. bOAst) or the consonant sound (e.g. sNaCK vs. sNAcK). These results confirm that case mixing can have different effect depending on the type of orthographic unit that is broken up by the manipulation. They demonstrate that graphemes are units that play an important role in visual word recognition, and that manipulation of their presentation by case mixing will have a significant effect on response latencies to words in a lexical decision task. As such these findings need to be taken into account by the models of visual word recognition.


Sign in / Sign up

Export Citation Format

Share Document