scholarly journals Artificial neural networks versus LASSO regression for the prediction of long-term survival after surgery for invasive IPMN of the pancreas

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0249206
Author(s):  
Linus Aronsson ◽  
Roland Andersson ◽  
Daniel Ansari

Prediction of long-term survival in patients with invasive intraductal papillary mucinous neoplasm (IPMN) of the pancreas may aid in patient assessment, risk stratification and personalization of treatment. This study aimed to investigate the predictive ability of artificial neural networks (ANN) and LASSO regression in terms of 5-year disease-specific survival. ANN work in a non-linear fashion, having a potential advantage in analysis of variables with complex correlations compared to regression models. LASSO is a type of regression analysis facilitating variable selection and regularization. A total of 440 patients undergoing surgical treatment for invasive IPMN of the pancreas registered in the Surveillance, Epidemiology and End Results (SEER) database between 2004 and 2016 were analyzed. The dataset was prior to analysis randomly split into a modelling and test set (7:3). The accuracy, precision and F1 score for predicting mortality were 0.82, 0.83 and 0.89, respectively for ANN with variable selection compared to 0.79, 0.85 and 0.87, respectively for the LASSO-model. ANN using all variables showed similar accuracy, precision and F1 score of 0.81, 0.85 and 0.88, respectively compared to a logistic regression analysis. McNemar´s test showed no statistical difference between the models. The models showed high and similar performance with regard to accuracy and precision for predicting 5-year survival status.

2016 ◽  
Vol 9 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R. D. García ◽  
O. E. García ◽  
E. Cuevas ◽  
V. E. Cachorro ◽  
A. Barreto ◽  
...  

Abstract. This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations  >  85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.


2021 ◽  
Vol 9 (16) ◽  
pp. 5396-5402
Author(s):  
Youngjun Park ◽  
Min-Kyu Kim ◽  
Jang-Sik Lee

This paper presents synaptic transistors that show long-term synaptic weight modulation via injection of ions. Linear and symmetric weight update is achieved, which enables high recognition accuracy in artificial neural networks.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Rahel Jedamski ◽  
Jérémy Epp

Non-destructive determination of workpiece properties after heat treatment is of great interest in the context of quality control in production but also for prevention of damage in subsequent grinding process. Micromagnetic methods offer good possibilities, but must first be calibrated with reference analyses on known states. This work compares the accuracy and reliability of different calibration methods for non-destructive evaluation of carburizing depth and surface hardness of carburized steel. Linear regression analysis is used in comparison with new methods based on artificial neural networks. The comparison shows a slight advantage of neural network method and potential for further optimization of both approaches. The quality of the results can be influenced, among others, by the number of teaching steps for the neural network, whereas more teaching steps does not always lead to an improvement of accuracy for conditions not included in the initial calibration.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Guang-Chuan Mu ◽  
Yuan Huang ◽  
Zhi-Ming Liu ◽  
Xiang-Hua Wu ◽  
Xin-Gan Qin ◽  
...  

Abstract Background The aim of this study was to explore the prognostic factors and establish a nomogram to predict the long-term survival of gastric cancer patients. Methods The clinicopathological data of 421 gastric cancer patients, who were treated with radical D2 lymphadenectomy by the same surgical team between January 2009 and March 2017, were collected. The analysis of long-term survival was performed using Cox regression analysis. Based on the multivariate analysis results, a prognostic nomogram was formulated to predict the 5-year survival rate probability. Results In the present study, the total overall 3-year and 5-year survival rates were 58.7 and 45.8%, respectively. The results of the univariate Cox regression analysis revealed that tumor staging, tumor location, Borrmann type, the number of lymph nodes dissected, the number of lymph node metastases, positive lymph nodes ratio, lymphocyte count, serum albumin, CEA, CA153, CA199, BMI, tumor size, nerve invasion, and vascular invasion were prognostic factors for gastric cancer (all, P < 0.05). However, merely tumor staging, tumor location, positive lymph node ratio, CA199, BMI, tumor size, nerve invasion, and vascular invasion were independent risk factors, based on the results of the multivariate Cox regression analysis (all, P < 0.05). The nomogram based on eight independent prognostic factors revealed a well-degree of differentiation with a concordance index of 0.76 (95% CI: 0.72–0.79, P < 0.001), which was better than the AJCC-7 staging system (concordance index = 0.68). Conclusion The present study established a nomogram based on eight independent prognostic factors to predict long-term survival in gastric cancer patients. The nomogram would be beneficial for more accurately predicting the prognosis of gastric cancer, and provide important basis for making individualized treatment plans following surgery.


Author(s):  
F. Lo´pez Pen˜a ◽  
F. Bellas ◽  
R. J. Duro ◽  
P. Farin˜as

Artificial Neural Networks (ANNs) and evolution are applied to the analysis of turbulent signals. In a first instance, a new trainable delay based artificial neural network is used to analyze Hot Wire Anemometer (HW) signals obtained at different positions within the wake of a circular cylinder with Reynolds number values ranging from 2000 to 8000. Results show that these networks are capable of performing accurate short term predictions of the turbulent signal. In addition, the ANNs can be set in a long term prediction mode resulting in a sort of non linear filter able to extract the features having to do with the larger eddies and coherent structures. In a second stage these networks are used to reconstruct a regularly sampled signal straight from the irregularly sampled one provided by a Laser Doppler Anemometer (LDA). The irregular sampling dynamics of the LDA signals is governed by the arrival of the seeding particles, superimposing the already complex turbulent signal characteristics. To cope with this complexity, an evolutionary based strategy is used to perform an adaptive and continuous online training of the ANNs. This approach permits obtaining a regularly sampled signal not by interpolating the original one, as it is often done, but by modeling it.


Sign in / Sign up

Export Citation Format

Share Document