scholarly journals New bioassay cage methodology for in vitro studies on Varroa destructor and Apis mellifera

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250594
Author(s):  
Rassol Bahreini ◽  
Medhat Nasr ◽  
Cassandra Docherty ◽  
David Feindel ◽  
Samantha Muirhead ◽  
...  

Varroa destructor Anderson and Trueman, is an ectoparasitic mite of honey bees, Apis mellifera L., that has been considered a major cause of colony losses. Synthetic miticides have been developed and registered to manage this ectoparasite, however, resistance to registered pyrethroid and organophosphate Varroacides have already been reported in Canada. To test toxicity of miticides, current contact-based bioassay methods are designed to evaluate mites and bees separately, however, these methods are unlikely to give an accurate depiction of how miticides interact at the colony level. Therefore, the objective of this study was to develop a bioassay cage for testing the toxicity of miticides on honey bees and Varroa mites simultaneously using amitraz as a reference chemical. A 800 mL polypropylene plastic cage holding 100–150 bees was designed and officially named “Apiarium”. A comparison of the effects of three subsequent dilutions of amitraz was conducted on: Varroa mites placed in glass vials, honey bees in glass Mason jars, and Varroa-infested bees in Apiariums. Our results indicated cumulative Varroa mortality was dose-dependent in the Apiarium after 4 h and 24 h assessments. Apiarium and glass vial treatments at 24 h also had high mite mortality and a positive polynomial regression between Varroa mortality and amitraz dose rates. Moreover, chemical application in the Apiarium was less toxic for bees compared to the Mason jar method. Considering these results, the Apiarium bioassay provides a simple, cheap and reliable method for simultaneous chemical screening on V. destructor and A. mellifera. Furthermore, as mites and bees are tested together, the Apiarium simulates a colony-like environment that provides a necessary bridge between laboratory bioassay testing and full field experimentation. The versatility of the Apiarium allows researchers to test a multitude of different honey bee bioassay experiments including miticide screening, delivery methods for chemical products, or development of new mite resistance-testing methodology.

Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 216
Author(s):  
Matthieu Guichard ◽  
Benoît Droz ◽  
Evert W. Brascamp ◽  
Adrien von Virag ◽  
Markus Neuditschko ◽  
...  

For the development of novel selection traits in honey bees, applicability under field conditions is crucial. We thus evaluated two novel traits intended to provide resistance against the ectoparasitic mite Varroa destructor and to allow for their straightforward implementation in honey bee selection. These traits are new field estimates of already-described colony traits: brood recapping rate (‘Recapping’) and solidness (‘Solidness’). ‘Recapping’ refers to a specific worker characteristic wherein they reseal a capped and partly opened cell containing a pupa, whilst ‘Solidness’ assesses the percentage of capped brood in a predefined area. According to the literature and beekeepers’ experiences, a higher recapping rate and higher solidness could be related to resistance to V. destructor. During a four-year field trial in Switzerland, the two resistance traits were assessed in a total of 121 colonies of Apis mellifera mellifera. We estimated the repeatability and the heritability of the two traits and determined their phenotypic correlations with commonly applied selection traits, including other putative resistance traits. Both traits showed low repeatability between different measurements within each year. ‘Recapping’ had a low heritability (h2 = 0.04 to 0.05, depending on the selected model) and a negative phenotypic correlation to non-removal of pin-killed brood (r = −0.23). The heritability of ‘Solidness’ was moderate (h2 = 0.24 to 0.25) and did not significantly correlate with resistance traits. The two traits did not show an association with V. destructor infestation levels. Further research is needed to confirm the results, as only a small number of colonies was evaluated.


Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 178
Author(s):  
Roksana Kruszakin ◽  
Paweł Migdal

So far, larval rearing in vitro has been an important method in the assessment of bee toxicology, particularly in pesticide risk assessment. However, natural products are increasingly used to control honey bee pathogens or to enhance bee immunity, but their effects on honey bee larvae are mostly unknown. In this study, laboratory studies were conducted to determine the effects of including selected aqueous plant infusions in the diet of honey bee (Apis mellifera L.) larvae in vitro. The toxicity of infusions from three different plant species considered to be medicinal plants was evaluated: tansy (Tanacetum vulgare L.), greater celandine (Chelidonium majus L.), and coriander (Coriandrum sativum L.). The impact of each on the survival of the larvae of honey bees was also evaluated. One-day-old larvae were fed a basal diet consisting of distilled water, sugars (glucose and fructose), yeast extract, and freeze-dried royal jelly or test diets in which distilled water was replaced by plant infusions. The proportion of the diet components was adjusted to the age of the larvae. The larvae were fed twice a day. The experiment lasted seven days. Significant statistical differences in survival rates were found between groups of larvae (exposed or not to the infusions of tansy, greater celandine, and coriander). A significant decrease (p < 0.05) in the survival rate was observed in the group with the addition of a coriander herb infusion compared to the control. These results indicate that plant extracts intended to be used in beekeeping should be tested on all development stages of honey bees.


2020 ◽  
Vol 64 (1) ◽  
pp. 55-66
Author(s):  
Fiorella G. De Piano ◽  
Matias D. Maggi ◽  
Facundo R. Meroi Arceitto ◽  
Marcela C. Audisio ◽  
Martín Eguaras ◽  
...  

AbstractApis mellifera L. is an essential pollinator that is currently being affected by several stressors that disturb their ecological function and produce colony losses. Colonies are being seriously affected by the ectoparasitic mite Varroa destructor. The relationship between stressors and bee symbionts is being studied in order to enhance bee health. The goal of this study was to evaluate the effect of cell-free supernatants (CFSs) produced by Lactobacillus johnsonii AJ5, Enterococcus faecium SM21 and Bacillus subtilis subsp. subtilis Mori2 on A. mellifera nutritional parameters and their toxicity against V. destructor. Toxicity and survival bioassays were conducted on adult bees with different concentrations of CFSs. Nutritional parameters such as soluble proteins and fat bodies in abdomens were measured. Varroa destructor toxicity was analyzed by a contact exposure method and via bee hemolymph. At low concentrations, two of CFSs tends to enhance bee survival. Remarkably fat bodies maintained their levels with all CFS concentrations in the abdomens, and soluble protein increased at a high concentration of two CFSs. Toxicity against V. destructor was observed only via hemolymph, and results were in agreement with the treatment that produced an increase in bee proteins. Finally, CFS produced by L. johnsonii AJ5 could be a promising natural alternative for strengthening bee health.


2018 ◽  
Vol 74 (3) ◽  
pp. 301-315 ◽  
Author(s):  
Noble I. Egekwu ◽  
Francisco Posada ◽  
Daniel E. Sonenshine ◽  
Steven Cook

2020 ◽  
Vol 52 (1) ◽  
Author(s):  
Matthieu Guichard ◽  
Vincent Dietemann ◽  
Markus Neuditschko ◽  
Benjamin Dainat

Abstract Background In spite of the implementation of control strategies in honey bee (Apis mellifera) keeping, the invasive parasitic mite Varroa destructor remains one of the main causes of colony losses in numerous countries. Therefore, this parasite represents a serious threat to beekeeping and agro-ecosystems that benefit from the pollination services provided by honey bees. To maintain their stocks, beekeepers have to treat their colonies with acaricides every year. Selecting lineages that are resistant to infestations is deemed to be a more sustainable approach. Review Over the last three decades, numerous selection programs have been initiated to improve the host–parasite relationship and to support honey bee survival in the presence of the parasite without the need for acaricide treatments. Although resistance traits have been included in the selection strategy of honey bees, it has not been possible to globally solve the V. destructor problem. In this study, we review the literature on the reasons that have potentially limited the success of such selection programs. We compile the available information to assess the relevance of selected traits and the potential environmental effects that distort trait expression and colony survival. Limitations to the implementation of these traits in the field are also discussed. Conclusions Improving our knowledge of the mechanisms underlying resistance to V. destructor to increase trait relevance, optimizing selection programs to reduce environmental effects, and communicating selection outcomes are all crucial to efforts aiming at establishing a balanced relationship between the invasive parasite and its new host.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0223236 ◽  
Author(s):  
Haftom Gebremedhn ◽  
Bezabeh Amssalu ◽  
Lina De Smet ◽  
Dirk C. de Graaf

2015 ◽  
Vol 126 ◽  
pp. 12-20 ◽  
Author(s):  
Mollah Md. Hamiduzzaman ◽  
Ernesto Guzman-Novoa ◽  
Paul H. Goodwin ◽  
Mariana Reyes-Quintana ◽  
Gun Koleoglu ◽  
...  

2014 ◽  
Vol 61 (3) ◽  
pp. 207-215 ◽  
Author(s):  
E. Zakar ◽  
A. Jávor ◽  
Sz. Kusza

2011 ◽  
Vol 54 (3) ◽  
pp. 261-268 ◽  
Author(s):  
Masoud M. Ardestani ◽  
Rahim Ebadi ◽  
Gholamhossein Tahmasbi

Sign in / Sign up

Export Citation Format

Share Document