scholarly journals Effects of rainfall, temperature and photoperiod on the phenology of ephemeral resources for selected bushveld woody plant species in southern Africa

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251421
Author(s):  
Alan Barrett ◽  
Leslie Brown

Variability of ephemeral resources provided by woody plants is related to fluctuating environmental conditions, specifically the predominant climate variables temperature and rainfall. Photoperiod has less impact but also plays a role in the onset of resource pulses. In the seasonally affected bushveld of southern Africa, declining resources could have dire consequences to various animals that depend on these resources. Understanding the impact that rainfall, temperature and photoperiod has on woody plant resources allows managers of natural areas to plan for times when resources are scarce. Using a series of General Linear Models, this baseline study investigates the effects that these variables have on flower production, numbers of new fruit/pods and numbers of new leaves for 113 tagged trees from 26 woody plant species. Leads, lags and coincidental relationships observed between environmental predictor and phenological response variables were explored using time-series cross-correlations and concomitant correlograms. Model results indicated that temperature was the predominant indicator for flowering, with initial flowering starting when temperatures increase in September. A significant lead was observed between flowering and rainfall, suggesting that flower numbers increase approximately one month before rainfall increases. Temperature had the biggest effect on the number of species with new fruits and pods. Significant lags were observed between new fruits and pods and all environmental variables investigated, indicating that these resources depend on rainfall, temperature and photoperiod to reach their full potential. Photoperiod, temperature and the interaction between these variables had a noticeable effect on the number of species with new leaves. Peaks in species with new leaves coincide with peaks in rainfall, temperature and photoperiod. No leading or lagging indicators were observed between new leaves and the environmental variables investigated. In areas containing wildlife populations, recommendations are to undertake regular monitoring of climatic variables investigated, and the ephemeral resources on woody plant species.

2009 ◽  
Vol 36 (9) ◽  
pp. 1685-1697 ◽  
Author(s):  
Hong Qian ◽  
W. Daniel Kissling ◽  
Xianli Wang ◽  
Peter Andrews

Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 189
Author(s):  
N’golo Koné ◽  
Kolotchèlèma Silué ◽  
Souleymane Konaté ◽  
Karl Linsenmair

Termites are one of the major components of tropical ecosystems. However, the ecological and biological variables determining the structure of their communities within natural habitats are less documented in general and especially in the Comoe National Park, a Sudano-Guinean savanna zone located in the north-eastern part of Côte d’Ivoire (West Africa). Using a standardized method of belt transects, the structure of termite’s communities was estimated within habitats differing in the structure of their vegetation, soil characteristics, and the disturbance level caused by annual occurrences of bushfires. The effect of a set of environmental variables (habitat type, occurrence of annual bushfire, woody plant density, woody plant species richness, and soil physicochemical parameters) was tested on the habitat-specific recorded termite species. Sixty species of termites belonging to 19 genera, seven subfamilies and two families, namely Rhinotermitidae (Coptotermitinae and Rhinotermitinae) and Termitidae (Apicotermitinae, Cubitermitinae, Macrotermitinae, Nasutitermitinae, and Termitinae) were sampled. These species were assigned to the four feeding groups of termites: fungus growers (18 species), wood feeders (17 species), soil feeders (19 species) and the grass feeders (6 species). The highest diversity of termites was encountered in forest habitats, with 37 and 34, respectively, for the gallery forest and the forest island. Among savanna habitats, the woodland savanna was identified as the most diversified habitat with 32 recorded species, followed by the tree savanna (28 species) and the grassy savanna (17 species). The distribution of termite species and their respective feedings groups was determined by the habitat type and a set of environmental variables such as Woody Plant Diversity (WPD), Woody plant Families Diversity (WPFD), and Organic Carbon (OC). The annual Fire Occurrence (FO) was found to indirectly impact the characteristics of termite assemblages within natural habitats via their respective Herbaceous Species Richness (HSR) and Woody Plant Species Richness (WPSR). In summary, the spatial heterogeneity of the Comoe National Park, modeled by the uncontrolled annual bushfire, offers a diversified natural habitat with an important variety of termite-habitat-specific species, probably due to the food preference of these organisms and its relatively good conservation status.


2017 ◽  
Vol 65 ◽  
pp. 1-9
Author(s):  
Tetiana Iusypiva ◽  
Galyna Miasoid

The paper examines the influence of industrial emissions of sulphur (IV) and nitrogen (IV) oxides on the percentage of stem anatomical characteristics of the autochthonous woody plant species undergrowth of Acer platanoides L. and Fraxinus excelsior L. in the southern industrial zone of the city of Dnipro (Ukraine). It is ascertained, that the ratio of the primary cortex share to the central cylinder share does not change in the stems of annual shoots of the both studied woody plant species when they are exposed to the influence of the toxic gases. However, there are significant changes in the ratio of shares of histological elements in the undergrowth stems of F. excelsior. The use of both absolute and relevant values of anatomic parameters of the plant vegetative organs is needed to analyse the woody plants resistance to technogenic pollution of the environment.


Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Jan W. van Wagtendonk ◽  
Peggy E. Moore ◽  
Julie L. Yee ◽  
James A. Lutz

Abstract Background The effects of climate on plant species ranges are well appreciated, but the effects of other processes, such as fire, on plant species distribution are less well understood. We used a dataset of 561 plots 0.1 ha in size located throughout Yosemite National Park, in the Sierra Nevada of California, USA, to determine the joint effects of fire and climate on woody plant species. We analyzed the effect of climate (annual actual evapotranspiration [AET], climatic water deficit [Deficit]) and fire characteristics (occurrence [BURN] for all plots, fire return interval departure [FRID] for unburned plots, and severity of the most severe fire [dNBR]) on the distribution of woody plant species. Results Of 43 species that were present on at least two plots, 38 species occurred on five or more plots. Of those 38 species, models for the distribution of 13 species (34%) were significantly improved by including the variable for fire occurrence (BURN). Models for the distribution of 10 species (26%) were significantly improved by including FRID, and two species (5%) were improved by including dNBR. Species for which distribution models were improved by inclusion of fire variables included some of the most areally extensive woody plants. Species and ecological zones were aligned along an AET-Deficit gradient from cool and moist to hot and dry conditions. Conclusions In fire-frequent ecosystems, such as those in most of western North America, species distribution models were improved by including variables related to fire. Models for changing species distributions would also be improved by considering potential changes to the fire regime.


1969 ◽  
Vol 47 (12) ◽  
pp. 1851-1855 ◽  
Author(s):  
E. S. Telfer

Prediction equations are presented for use in estimating total aboveground weight and maximum leaf weight for 22 species of woody plants. Stem diameter at the ground line was found to be closely correlated with both total and leaf weights. This diameter was therefore used in the equations as the measurement from which weights were predicted.


Sign in / Sign up

Export Citation Format

Share Document