scholarly journals A novel diagnostic approach for assessing pulmonary blood flow distribution using conventional X-ray angiography

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253565
Author(s):  
Takuya Sakaguchi ◽  
Yuichiro Watanabe ◽  
Masashi Hirose ◽  
Kohta Takei ◽  
Satoshi Yasukochi

Objective Quantitative assessment of pulmonary blood flow distribution is important when determining the clinical indications for treating pulmonary arterial branch stenosis. Lung perfusion scintigraphy is currently the gold standard for quantitative blood flow measurement. However, it is expensive, cannot provide a real-time assessment, requires additional sedation, and exposes the patient to ionizing radiation. The aim of this study was to investigate the feasibility of a novel technology for measuring pulmonary blood flow distribution in each lung by conventional X-ray pulmonary angiography and to compare its performance to that of lung perfusion scintigraphy. Methods Contrast-enhanced X-ray pulmonary angiography images were acquired at a frame rate of 30 frames per second. The baseline mask image, obtained before contrast agent injection, was subtracted from subsequent, consecutive images. The time-signal intensity curves of two regions of interest, established at each lung field, were obtained on a frame-to-frame basis. The net increase in signal intensity within each region at the torrent period during the second cardiac cycle before contrast agent enhancement over the total lung field was measured, and the right-to-left ratio of the signal intensity was calculated. The right-to-left ratio obtained with this approach was compared to that obtained with scintigraphy. Agreement of the right-to-left ratio between X-ray angiography and lung scintigraphy measurements was assessed using linear fitting with the Pearson correlation coefficient. Result The calculation of the right-to-left ratio of pulmonary blood flow by our kinetic model was feasible for seven children as a pilot study. The right-to-left ratio of pulmonary blood flow distribution calculated from pulmonary angiography was in good agreement with that of lung perfusion scintigraphy, with a Pearson correlation coefficient of 0.91 and a slope of linear fit of 1.2 (p<0.005). Conclusion The novel diagnostic technology using X-ray pulmonary angiography from our kinetic model can feasibly quantify the right-to-left ratio of pulmonary blood flow distribution. This technology may serve as a substitute for lung perfusion scintigraphy, which is quite beneficial for small children susceptible to radiation exposure.

2010 ◽  
Vol 108 (1) ◽  
pp. 181-188 ◽  
Author(s):  
Alejandro Sánchez Crespo ◽  
Jenny Hallberg ◽  
Jon O. Lundberg ◽  
Sten G. E. Lindahl ◽  
Hans Jacobsson ◽  
...  

There are a number of evidences suggesting that lung perfusion distribution is under active regulation and determined by several factors in addition to gravity. In this work, we hypothesised that autoinhalation of nitric oxide (NO), produced in the human nasal airways, may be one important factor regulating human lung perfusion distribution in the upright position. In 15 healthy volunteers, we used single-photon emission computed tomography technique and two tracers (99mTc and 113mIn) labeled with human macroaggregated albumin to assess pulmonary blood flow distribution. In the sitting upright position, subjects first breathed NO free air through the mouth followed by the administration of the first tracer. Subjects then switched to either nasal breathing or oral breathing with the addition of exogenous NO-enriched air followed by the administration of the second tracer. Compared with oral breathing, nasal breathing induced a blood flow redistribution of ∼4% of the total perfusion in the caudal to cranial and dorsal to ventral directions. For low perfused lung regions like the apical region, this represents a net increase of 24% in blood flow. Similar effects were obtained with the addition of exogenous NO during oral breathing, indicating that NO and not the breathing condition was responsible for the blood flow redistribution. In conclusion, these results provide evidence that autoinhalation of endogenous NO from the nasal airways may ameliorate the influence of gravity on pulmonary blood flow distribution in the upright position. The presence of nasal NO only in humans and higher primates suggest that it may be an important part of the adaptation to bipedalism.


1999 ◽  
Vol 87 (1) ◽  
pp. 132-141 ◽  
Author(s):  
Steven Deem ◽  
Richard G. Hedges ◽  
Steven McKinney ◽  
Nayak L. Polissar ◽  
Michael K. Alberts ◽  
...  

Severe anemia is associated with remarkable stability of pulmonary gas exchange (S. Deem, M. K. Alberts, M. J. Bishop, A. Bidani, and E. R. Swenson. J. Appl. Physiol. 83: 240–246, 1997), although the factors that contribute to this stability have not been studied in detail. In the present study, 10 Flemish Giant rabbits were anesthetized, paralyzed, and mechanically ventilated at a fixed minute ventilation. Serial hemodilution was performed in five rabbits by simultaneous withdrawal of blood and infusion of an equal volume of 6% hetastarch; five rabbits were followed over a comparable time. Ventilation-perfusion (V˙a/Q˙) relationships were studied by using the multiple inert-gas-elimination technique, and pulmonary blood flow distribution was assessed by using fluorescent microspheres. Expired nitric oxide (NO) was measured by chemiluminescence. Hemodilution resulted in a linear fall in hematocrit over time, from 30 ± 1.6 to 11 ± 1%. Anemia was associated with an increase in arterial [Formula: see text] in comparison with controls ( P < 0.01 between groups). The improvement in O2 exchange was associated with reducedV˙a/Q˙heterogeneity, a reduction in the fractal dimension of pulmonary blood flow ( P = 0.04), and a relative increase in the spatial correlation of pulmonary blood flow ( P = 0.04). Expired NO increased with anemia, whereas it remained stable in control animals ( P < 0.0001 between groups). Anemia results in improved gas exchange in the normal lung as a result of an improvement in overallV˙a/Q˙matching. In turn, this may be a result of favorable changes in pulmonary blood flow distribution, as assessed by the fractal dimension and spatial correlation of blood flow and as a result of increased NO availability.


1999 ◽  
Vol 14 (3) ◽  
pp. 154-160 ◽  
Author(s):  
Masao Tayama ◽  
Nobuaki Hirata ◽  
Tohru Matsushita ◽  
Tetsuya Sano ◽  
Norihide Fukushima ◽  
...  

2000 ◽  
Vol 16 (2) ◽  
pp. 288 ◽  
Author(s):  
T.V. Brogan ◽  
R.G. Hedges ◽  
S. McKinney ◽  
H.T. Robertson ◽  
M.P. Hlastala ◽  
...  

Respiration ◽  
1974 ◽  
Vol 31 (4) ◽  
pp. 289-295
Author(s):  
M. Arborelius, jr. ◽  
V. Lopéz-Majano ◽  
R.C. Reba ◽  
T.K. Natarajan

2019 ◽  
Vol 16 (10) ◽  
pp. 1321-1326 ◽  
Author(s):  
Luisa Morales-Nebreda ◽  
Christopher S. Chung ◽  
Rishi Agrawal ◽  
Anjana V. Yeldandi ◽  
Benjamin D. Singer ◽  
...  

1996 ◽  
Vol 81 (3) ◽  
pp. 1051-1061 ◽  
Author(s):  
M. P. Hlastala ◽  
S. L. Bernard ◽  
H. H. Erickson ◽  
M. R. Fedde ◽  
E. M. Gaughan ◽  
...  

Recent studies using microspheres in dogs, pigs and goats have demonstrated considerable heterogeneity of pulmonary perfusion within isogravitational planes. These studies demonstrate a minimal role of gravity in determining pulmonary blood flow distribution. To test whether a gravitational gradient would be more apparent in an animal with large vertical lung height, we measured perfusion heterogeneity in horses (vertical lung height = approximately 55 cm). Four unanesthetized Thoroughbred geldings (422-500 kg) were studied awake in the standing position with fluorescent microspheres injected into a central vein. Between 1,621 and 2,503 pieces (1.3 cm3 in volume) were obtained from the lungs of each horse with spatial coordinates, and blood flow was determined for each piece. The coefficient of variation of blood flow throughout the lungs ranged between 22 and 57% among the horses. Considerable heterogeneity was seen in each isogravitational plane. The relationship between blood flow and vertical height up the lung was characterized by the slope and correlation coefficient of a least squares regression analysis. The slopes within each horse ranged from -0.052 to +0.021 relative flow units/cm height up the lung, and the correlation coefficients varied from 0.12 to 0.75. A positive slope, indicating that flow increased with vertical distance up the lung (opposite to gravity), was observed in three of the four horses. In addition, blood flow was uniformly low in three of the four horses in the most cranial portions of the lungs. We conclude that in lungs of resting unanesthetized horses, animals with a large lung height, there is no consistent vertical gradient to pulmonary blood flow and there is a considerable degree of perfusion heterogeneity, indicating that gravity alone does not play the major role in determining blood flow distribution.


2006 ◽  
Vol 101 (2) ◽  
pp. 583-589 ◽  
Author(s):  
A. Cortney Henderson ◽  
David L. Levin ◽  
Susan R. Hopkins ◽  
I. Mark Olfert ◽  
Richard B. Buxton ◽  
...  

Head-down tilt has been shown to increase lung water content in animals and alter the distribution of ventilation in humans; however, its effects on the distribution of pulmonary blood flow in humans are unknown. We hypothesized that head-down tilt would increase the heterogeneity of pulmonary blood flow in humans, an effect analogous to the changes seen in the distribution of ventilation, by increasing capillary hydrostatic pressure and fluid efflux in the lung. To test this, we evaluated changes in the distribution of pulmonary blood flow in seven normal subjects before and after 1 h of 30° head-down tilt using the magnetic resonance imaging technique of arterial spin labeling. Data were acquired in triplicate before tilt and at 10-min intervals for 1 h after tilt. Pulmonary blood flow heterogeneity was quantified by the relative dispersion (standard deviation/mean) of signal intensity for all voxels within the right lung. Relative dispersion was significantly increased by 29% after tilt and remained elevated during the 1 h of measurements after tilt (0.84 ± 0.06 pretilt, 1.09 ± 0.09 calculated for all time points posttilt, P < 0.05). We speculate that the mechanism most likely responsible for our findings is that increased pulmonary capillary pressures and fluid efflux in the lung resulting from head-down tilt alters regional blood flow distribution.


Sign in / Sign up

Export Citation Format

Share Document