scholarly journals Public understanding of climate change-related sea-level rise

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254348
Author(s):  
Rebecca K. Priestley ◽  
Zoë Heine ◽  
Taciano L. Milfont

Sea-level rise resulting from climate change is impacting coasts around the planet. There is strong scientific consensus about the amount of sea-level rise to 2050 (0.24–0.32 m) and a range of projections to 2100, which vary depending on the approach used and the mitigation measures taken to reduce carbon emissions. Despite this strong scientific consensus regarding the reality of climate change-related sea-level rise, and the associated need to engage publics in adaptation and mitigation efforts, there is a lack of empirical evidence regarding people’s understanding of the issue. Here we investigate public understanding of the amount, rate and causes of sea-level rise. Data from a representative sample of New Zealand adults showed a suprising tendency for the public to overestimate the scientifically plausible amount of sea-level rise by 2100 and to identify melting sea ice as its primary causal mechanism. These findings will be valuable for scientists communicating about sea-level rise, communicators seeking to engage publics on the issue of sea-level rise, and media reporting on sea-level rise.

2021 ◽  
Author(s):  
Rebecca Priestley ◽  
Zoë Heine ◽  
Taciano L Milfont

Sea-level rise resulting from climate change is impacting coasts around the planet. There is strong scientific consensus about the amount of sea-level rise to 2050 (0.24–0.32 m) and a range of projections to 2100, which vary depending on the approach used and the mitigation measures taken to reduce carbon emissions. Despite this strong scientific consensus regarding the reality of climate change-related sea-level rise, and the associated need to engage publics in adaptation and mitigation efforts, there is a lack of empirical evidence regarding people’s understanding of the issue. Here we investigate public understanding of the amount, rate and causes of sea-level rise. Data from a representative sample of New Zealand adults showed a suprising tendency for the public to overestimate the scientifically plausible amount of sea-level rise by 2100 and to identify melting sea ice as its primary causal mechanism. These findings will be valuable for scientists communicating about sea-level rise, communicators seeking to engage publics on the issue of sea-level rise, and media reporting on sea-level rise.


2021 ◽  
Author(s):  
Rebecca Priestley ◽  
Zoë Heine ◽  
Taciano L Milfont

Sea-level rise resulting from climate change is impacting coasts around the planet. There is strong scientific consensus about the amount of sea-level rise to 2050 (0.24–0.32 m) and a range of projections to 2100, which vary depending on the approach used and the mitigation measures taken to reduce carbon emissions. Despite this strong scientific consensus regarding the reality of climate change-related sea-level rise, and the associated need to engage publics in adaptation and mitigation efforts, there is a lack of empirical evidence regarding people’s understanding of the issue. Here we investigate public understanding of the amount, rate and causes of sea-level rise. Data from a representative sample of New Zealand adults showed a suprising tendency for the public to overestimate the scientifically plausible amount of sea-level rise by 2100 and to identify melting sea ice as its primary causal mechanism. These findings will be valuable for scientists communicating about sea-level rise, communicators seeking to engage publics on the issue of sea-level rise, and media reporting on sea-level rise.


2020 ◽  
Vol 5 (11) ◽  
pp. 92 ◽  
Author(s):  
Rick Kool ◽  
Judy Lawrence ◽  
Martin Drews ◽  
Robert Bell

Sea-level rise increasingly affects low-lying and exposed coastal communities due to climate change. These communities rely upon the delivery of stormwater and wastewater services which are often co-located underground in coastal areas. Due to sea-level rise and associated compounding climate-related hazards, managing these networks will progressively challenge local governments as climate change advances. Thus, responsible agencies must reconcile maintaining Levels of Service as the impacts of climate change worsen over the coming decades and beyond. A critical question is whether such networks can continue to be adapted/protected over time to retain Levels of Service, or whether eventual retreat may be the only viable adaptation option? If so, at what performance threshold? In this paper, we explore these questions for stormwater and wastewater, using a dynamic adaptive pathway planning (DAPP) approach designed to address thresholds and increasing risk over time. Involving key local stakeholders, we here use DAPP to identify thresholds for stormwater and wastewater services and retreat options, and for developing a comprehensive and area-specific retreat strategy comprising pathway portfolios, retreat phases, potential land use changes, and for exploring pathway conflicts and synergies. The result is a prototype for an area near Wellington, New Zealand, where a managed retreat of water infrastructure is being considered at some future juncture. Dynamic adaptive strategies for managed retreats can help to reduce future disruption from coastal flooding, signal land use changes early, inform maintenance, and allow for gradual budget adjustments by the agencies that can manage expenditure over time. We present this stepwise process in a pathway form that can be communicated spatially and visually, thereby making a retreat a more manageable, sequenced, adaptation option for water agencies, and the communities they serve.


2021 ◽  
Author(s):  
◽  
Zarah Sahib

<p>Urban inclination has unfavourably allowed for urban development throughout New Zealand to be found either along once naturally ecologically established and natural defensive coastal shorelines, waterfronts or along reclaimed shores to be developed on top of. Through reclamation, it has shown fundamentals of how we want to live closer to the water’s edge, however in this process the lack of social and ecological space is diminishing and being catalyst residential and high end luxury private space (Dianne Menzez). Urban inclination should propose that urban waterfronts become multifunctional and facilitate towards a great public space. However with a deep attachment for the water’s edge, we orientate living ourselves towards the water which also shows an interesting argument between the city and coast relationship that also comes with increasing climate change conditions.   Climate change has been under extensive focus for frequent years, conditions of notably large New Zealand urban sites remain under threat of infringing sea level rise and storm events which are in need for proper systematic infrastructure for this adaption purpose. With significant numbers of infrastructural systems situated in close proximity to waterfront environments, the rising numbers of communities orientated towards this face vulnerability to such global issues. In events of future sea level rise, increasing flooding will definitely impact the prone waterfronts Wellington City is one of New Zealand’s most vulnerable sites to sea level rise due to its proximity to coastal edges. Its low lying surface and unsustainable infrastructure and design promotes flooding through deficient water networks.   This thesis identifies the Wellington’s post-industrial site; Centerport with proposals for intended residential development. There is however a great level of susceptibility the site does not meet needs for protection from arising climate conditions, and its current poor social relation to the wider waterfront, which this thesis intends to investigate and resolve.   Centerport remains vulnerable to being a crucial domain for connectivity to the harbor edge and coastal hazard impact compared to other waterfronts. Through the means of researching adaptive water technological systems, this thesis hopes it will provide and conceptualise an impact within private and public communities through addressing coastal resilience, waterfront resilience and provide permeable adaptive waterfront design for the arising climate conditions.</p>


2019 ◽  
Vol 28 (7) ◽  
pp. 778-796 ◽  
Author(s):  
Raquel Bertoldo ◽  
Claire Mays ◽  
Gisela Böhm ◽  
Wouter Poortinga ◽  
Marc Poumadère ◽  
...  

Scientists overwhelmingly agree that climate change exists and is caused by human activity. It has been argued that communicating the consensus can counter climate scepticism, given that perceived scientific consensus is a major factor predicting public belief that climate change is anthropogenic. However, individuals may hold different models of science, potentially affecting their interpretation of scientific consensus. Using representative surveys in the United Kingdom, France, Germany and Norway, we assessed whether the relationship between perceived scientific consensus and belief in anthropogenic climate change is conditioned by a person’s viewing science as ‘the search for truth’ or as ‘debate’. Results show that perceived scientific consensus is higher among climate change believers and moreover, significantly predicts belief in anthropogenic climate change. This relationship is stronger among people holding a model of science as the ‘search for truth’. These results help to disentangle the effect of implicit epistemological assumptions underlying the public understanding of the climate change debate.


Author(s):  
Mark Scallion ◽  
Mark Scallion ◽  
Samantha Pitts ◽  
Samantha Pitts

Sea level rise caused by climate change is a significant threat to communities in the Chesapeake Bay watershed. Audubon, in conjunction with NNOCCI, has crafted a locally applicable methodology for successfully sharing climate messages with the public. If enough voices are trained in proven climate communication techniques, the discourse around climate change will change to be productive, creative and solutions focused. Climate communicators and scientists frequently encounter two pitfalls. The first is assuming people have any understanding of climate science. Although studies indicate many feel it is an important issue, many are largely misinformed about the causes and ramifications of climate change. The second is the tendency to talk about climate in the context of unproductive cultural models. A good example of this is graphically highlighting the dire situation that is faced by polar bears, humans or other species, which lead people to quickly disengage from the issue as “too big and scary to deal with.” Through the use of solid explanatory chains, good climate communicators can fill cognitive gaps and avoid unproductive cultural models. Skilled framers direct the conversation towards helpful cultural models and explain climate issues through step-by-step cause and effect and strategically deployed explanatory metaphors. Skilled framers start the conversation with solutions in mind.


Author(s):  
Tao Wu

Accompanied by increasing population growth and urban sprawl, most coastal cities are unprecedentedly vulnerable to climate change and its impacts, such as sea level rise, increasing extreme storm events, and coastal flooding. Coastal resilience and sustainable development are antidotes to vulnerability; they aim to enhance the adaptive capability of absorbing disturbances and resisting uncertainty. This study explores building a quantitative assessment framework to measure resilience and provide an objective and comparable method to understand the strengths and weaknesses in a given region. The proposed 25 resilience indicators incorporate the aspects of essential livelihood protection, infrastructure and natural resource maintenance, emergency facilities and institutions, floodplain management regulations, and adaptive planning process. Each indicator is assigned the resilience quality that includes robustness, resourcefulness, redundancy, and rapidity. The aggregated resilience quality scoring reflects the systematic performance of the city to cope with the coastal hazards. The innovative part of this framework is combining hazard mitigation measures, climate adaptation strategies, and sustainable development goals together to achieve a comprehensive assessment method. In the case of New Haven, the resilience assessment is taken as a practical monitoring tool and decision-making support.


2021 ◽  
Author(s):  
R Kool ◽  
Judith Lawrence ◽  
M Drews ◽  
R Bell

Sea-level rise increasingly affects low-lying and exposed coastal communities due to climate change. These communities rely upon the delivery of stormwater and wastewater services which are often co-located underground in coastal areas. Due to sea-level rise and associated compounding climate-related hazards, managing these networks will progressively challenge local governments as climate change advances. Thus, responsible agencies must reconcile maintaining Levels of Service as the impacts of climate change worsen over the coming decades and beyond. A critical question is whether such networks can continue to be adapted/protected over time to retain Levels of Service, or whether eventual retreat may be the only viable adaptation option? If so, at what performance threshold? In this paper, we explore these questions for stormwater and wastewater, using a dynamic adaptive pathway planning (DAPP) approach designed to address thresholds and increasing risk over time. Involving key local stakeholders, we here use DAPP to identify thresholds for stormwater and wastewater services and retreat options, and for developing a comprehensive and area-specific retreat strategy comprising pathway portfolios, retreat phases, potential land use changes, and for exploring pathway conflicts and synergies. The result is a prototype for an area near Wellington, New Zealand, where a managed retreat of water infrastructure is being considered at some future juncture. Dynamic adaptive strategies for managed retreats can help to reduce future disruption from coastal flooding, signal land use changes early, inform maintenance, and allow for gradual budget adjustments by the agencies that can manage expenditure over time. We present this stepwise process in a pathway form that can be communicated spatially and visually, thereby making a retreat a more manageable, sequenced, adaptation option for water agencies, and the communities they serve.


2013 ◽  
Vol 19 (1) ◽  
pp. 306
Author(s):  
Taberannang Korauaba

"On the night the The Hungry Tide was screened on Māori Television in New Zealand, our family was having a farewell party for our relatives returning to Kiribati the next day. We sat cross-legged on a mat in a circle while women prepared meals for everyone... of course our family members were going to watch the 'movie' rather than a documentary. They were going to re-connect their memories of Kiribati through this film. Not suprisingly, climate change and sea level rise are already a disaster on the minds of these people."


Author(s):  
Josh Pasek

Scholars assessing the public understanding of science have long regarded informing Americans about scientific facts as key to raising Americans’ scientific literacy. But many Americans appear to be aware of the scientific consensus and nonetheless reject it. The individuals who are aware of the scientific consensus and reject its tenets tend to distrust scientists. They also focus their rejection on particular issues for which they may be otherwise motivated. This rejection may be driven by elites, who argue against the scientific consensus on issues like climate change by asserting either that the science is unsettled or by contending that the scientific consensus is itself a conspiratorial ploy. Individuals’ patterns of beliefs seem to imply that they view scientific evidence they dislike as the result of a conspiracy.


Sign in / Sign up

Export Citation Format

Share Document