scholarly journals Intravital fluorescence microscopy with negative contrast

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255204
Author(s):  
Juwell W. Wu ◽  
Yookyung Jung ◽  
Shu-Chi A. Yeh ◽  
Yongwan Seo ◽  
Judith M. Runnels ◽  
...  

Advances in intravital microscopy (IVM) have enabled the studies of cellular organization and dynamics in the native microenvironment of intact organisms with minimal perturbation. The abilities to track specific cell populations and monitor their interactions have opened up new horizons for visualizing cell biology in vivo, yet the success of standard fluorescence cell labeling approaches for IVM comes with a “dark side” in that unlabeled cells are invisible, leaving labeled cells or structures to appear isolated in space, devoid of their surroundings and lacking proper biological context. Here we describe a novel method for “filling in the void” by harnessing the ubiquity of extracellular (interstitial) fluid and its ease of fluorescence labelling by commonly used vascular and lymphatic tracers. We show that during routine labeling of the vasculature and lymphatics for IVM, commonly used fluorescent tracers readily perfuse the interstitial spaces of the bone marrow (BM) and the lymph node (LN), outlining the unlabeled cells and forming negative contrast images that complement standard (positive) cell labeling approaches. The method is simple yet powerful, offering a comprehensive view of the cellular landscape such as cell density and spatial distribution, as well as dynamic processes such as cell motility and transmigration across the vascular endothelium. The extracellular localization of the dye and the interstitial flow provide favorable conditions for prolonged Intravital time lapse imaging with minimal toxicity and photobleaching.

2004 ◽  
Vol 19 (3) ◽  
pp. 274-279
Author(s):  
Shigeaki Kanatani ◽  
Hidenori Tabata ◽  
Kazunori Nakajima

Cortical formation in the developing brain is a highly complicated process involving neuronal production (through symmetric or asymmetric cell division) interaction of radial glia with neuronal migration, and multiple modes of neuronal migration. It has been convincingly demonstrated by numerous studies that radial glial cells are neural stem cells. However, the processes by which neurons arise from radial glia and migrate to their final destinations in vivo are not yet fully understood. Recent studies using time-lapse imaging of neuronal migration are giving investigators an increasingly more detailed understanding of the mitotic behavior of radial glia and the migrating behavior of their daughter cells. In this review, we describe recent progress in elucidating neuronal migration in brain formation and how neuronal migration is disturbed by mutations in genes that control this process. ( J Child Neurol 2005;20:274—279).


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Heather N. Nelson ◽  
Anthony J. Treichel ◽  
Erin N. Eggum ◽  
Madeline R. Martell ◽  
Amanda J. Kaiser ◽  
...  

Abstract Background In the developing central nervous system, pre-myelinating oligodendrocytes sample candidate nerve axons by extending and retracting process extensions. Some contacts stabilize, leading to the initiation of axon wrapping, nascent myelin sheath formation, concentric wrapping and sheath elongation, and sheath stabilization or pruning by oligodendrocytes. Although axonal signals influence the overall process of myelination, the precise oligodendrocyte behaviors that require signaling from axons are not completely understood. In this study, we investigated whether oligodendrocyte behaviors during the early events of myelination are mediated by an oligodendrocyte-intrinsic myelination program or are over-ridden by axonal factors. Methods To address this, we utilized in vivo time-lapse imaging in embryonic and larval zebrafish spinal cord during the initial hours and days of axon wrapping and myelination. Transgenic reporter lines marked individual axon subtypes or oligodendrocyte membranes. Results In the larval zebrafish spinal cord, individual axon subtypes supported distinct nascent sheath growth rates and stabilization frequencies. Oligodendrocytes ensheathed individual axon subtypes at different rates during a two-day period after initial axon wrapping. When descending reticulospinal axons were ablated, local spinal axons supported a constant ensheathment rate despite the increased ratio of oligodendrocytes to target axons. Conclusion We conclude that properties of individual axon subtypes instruct oligodendrocyte behaviors during initial stages of myelination by differentially controlling nascent sheath growth and stabilization.


2013 ◽  
Vol 2013 (9) ◽  
pp. pdb.top077156 ◽  
Author(s):  
Edward S. Ruthazer ◽  
Anne Schohl ◽  
Neil Schwartz ◽  
Aydin Tavakoli ◽  
Marc Tremblay ◽  
...  

2001 ◽  
Vol 75 (15) ◽  
pp. 7114-7121 ◽  
Author(s):  
Jennifer L. Nargi-Aizenman ◽  
Diane E. Griffin

ABSTRACT Virus infection of neurons leads to different outcomes ranging from latent and noncytolytic infection to cell death. Viruses kill neurons directly by inducing either apoptosis or necrosis or indirectly as a result of the host immune response. Sindbis virus (SV) is an alphavirus that induces apoptotic cell death both in vitro and in vivo. However, apoptotic changes are not always evident in neurons induced to die by alphavirus infection. Time lapse imaging revealed that SV-infected primary cortical neurons exhibited both apoptotic and necrotic morphological features and that uninfected neurons in the cultures also died. Antagonists of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors protected neurons from SV-induced death without affecting virus replication or SV-induced apoptotic cell death. These results provide evidence that SV infection activates neurotoxic pathways that result in aberrant NMDA receptor stimulation and damage to infected and uninfected neurons.


Author(s):  
Martina Sonego ◽  
Ya Zhou ◽  
Madeleine Julie Oudin ◽  
Patrick Doherty ◽  
Giovanna Lalli

Mitochondrion ◽  
2015 ◽  
Vol 23 ◽  
pp. 32-41 ◽  
Author(s):  
Sergio Gonzalez ◽  
Ruani Fernando ◽  
Jade Berthelot ◽  
Claire Perrin-Tricaud ◽  
Emmanuelle Sarzi ◽  
...  

2014 ◽  
Vol 111 (1) ◽  
pp. 208-216 ◽  
Author(s):  
Naoko Nishiyama ◽  
Jeremy Colonna ◽  
Elise Shen ◽  
Jennifer Carrillo ◽  
Hiroshi Nishiyama

Synapses are continuously formed and eliminated throughout life in the mammalian brain, and emerging evidence suggests that this structural plasticity underlies experience-dependent changes of brain functions such as learning and long-term memory formation. However, it is generally difficult to understand how the rewiring of synaptic circuitry observed in vivo eventually relates to changes in animal's behavior. This is because afferent/efferent connections and local synaptic circuitries are very complicated in most brain regions, hence it is largely unclear how sensorimotor information is conveyed, integrated, and processed through a brain region that is imaged. The cerebellar cortex provides a particularly useful model to challenge this problem because of its simple and well-defined synaptic circuitry. However, owing to the technical difficulty of chronic in vivo imaging in the cerebellum, it remains unclear how cerebellar neurons dynamically change their structures over a long period of time. Here, we showed that the commonly used method for neocortical in vivo imaging was not ideal for long-term imaging of cerebellar neurons, but simple optimization of the procedure significantly improved the success rate and the maximum time window of chronic imaging. The optimized method can be used in both neonatal and adult mice and allows time-lapse imaging of cerebellar neurons for more than 5 mo in ∼80% of animals. This method allows vital observation of dynamic cellular processes such as developmental refinement of synaptic circuitry as well as long-term changes of neuronal structures in adult cerebellum under longitudinal behavioral manipulations.


1998 ◽  
Vol 111 (15) ◽  
pp. 2085-2095 ◽  
Author(s):  
J. Kolega

Different isoforms of non-muscle myosin II have different distributions in vivo, even within individual cells. In order to understand how these different distributions arise, the distribution and dynamics of non-muscle myosins IIA and myosin IIB were examined in cultured cells using immunofluorescence staining and time-lapse imaging of fluorescent analogs. Cultured bovine aortic endothelia contained both myosins IIA and IIB. Both isoforms distributed along stress fibers, in linear or punctate aggregates within lamellipodia, and diffusely around the nucleus. However, the A isoform was preferentially located toward the leading edge of migrating cells when compared with myosin IIB by double immunofluorescence staining. Conversely, the B isoform was enriched in structures at the cells' trailing edges. When fluorescent analogs of the two isoforms were co-injected into living cells, the injected myosins distributed with the same disparate localizations as endogenous myosins IIA and IIB. This indicated that the ability of the myosins to ‘sort’ within the cytoplasm is intrinsic to the proteins themselves, and not a result of localized synthesis or degradation. Furthermore, time-lapse imaging of injected analogs in living cells revealed differences in the rates at which the two isoforms rearranged during cell movement. The A isoform appeared in newly formed structures more rapidly than the B isoform, and was also lost more rapidly when structures disassembled. These observations suggest that the different localizations of myosins IIA and IIB reflect different rates at which the isoforms transit through assembly, movement and disassembly within the cell. The relative proportions of different myosin II isoforms within a particular cell type may determine the lifetimes of various myosin II-based structures in that cell.


Sign in / Sign up

Export Citation Format

Share Document