scholarly journals Neural responses to shot changes by cut in cinematographic editing: An EEG (ERD/ERS) study

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258485
Author(s):  
Javier Sanz-Aznar ◽  
Lydia Sánchez-Gómez ◽  
Luis Emilio Bruni ◽  
Carlos Aguilar-Paredes ◽  
Andreas Wulff-Abramsson

In order to analyze and detect neural activations and inhibitions in film spectators to shot changes by cut in films, we developed a methodology based on comparisons of recorded EEG signals and analyzed the event-related desynchronization/synchronization (ERD/ERS). The aim of the research is isolating these neuronal responses from other visual and auditory features that covary with film editing. This system of comparing pairs of signals using permutation tests, the Spearman correlation, and slope analysis is implemented in an automated way through sliding windows, analyzing all the registered electrodes signals at all the frequency bands defined. Through this methodology, we are able to locate, identify, and quantify the variations in neuronal rhythms in specific cortical areas and frequency ranges with temporal precision. Our results detected that after a cut there is a synchronization in theta rhythms during the first 188 ms with left lateralization, and also a desynchronization between 250 ms and 750 ms in the delta frequency band. The cortical area where most of these neuronal responses are detected in both cases is the parietal area.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Pereira ◽  
Pierre Megevand ◽  
Mi Xue Tan ◽  
Wenwen Chang ◽  
Shuo Wang ◽  
...  

AbstractA fundamental scientific question concerns the neural basis of perceptual consciousness and perceptual monitoring resulting from the processing of sensory events. Although recent studies identified neurons reflecting stimulus visibility, their functional role remains unknown. Here, we show that perceptual consciousness and monitoring involve evidence accumulation. We recorded single-neuron activity in a participant with a microelectrode in the posterior parietal cortex, while they detected vibrotactile stimuli around detection threshold and provided confidence estimates. We find that detected stimuli elicited neuronal responses resembling evidence accumulation during decision-making, irrespective of motor confounds or task demands. We generalize these findings in healthy volunteers using electroencephalography. Behavioral and neural responses are reproduced with a computational model considering a stimulus as detected if accumulated evidence reaches a bound, and confidence as the distance between maximal evidence and that bound. We conclude that gradual changes in neuronal dynamics during evidence accumulation relates to perceptual consciousness and perceptual monitoring in humans.


Author(s):  
Pedro Tomás ◽  
IST TU Lisbon ◽  
Aleksandar Ilic ◽  
Leonel Sousa

When analyzing the neuronal code, neuroscientists usually perform extra-cellular recordings of neuronal responses (spikes). Since the size of the microelectrodes used to perform these recordings is much larger than the size of the cells, responses from multiple neurons are recorded by each micro-electrode. Thus, the obtained response must be classified and evaluated, in order to identify how many neurons were recorded, and to assess which neuron generated each spike. A platform for the mass-classification of neuronal responses is proposed in this chapter, employing data-parallelism for speeding up the classification of neuronal responses. The platform is built in a modular way, supporting multiple web-interfaces, different back-end environments for parallel computing or different algorithms for spike classification. Experimental results on the proposed platform show that even for an unbalanced data set of neuronal responses the execution time was reduced of about 45%. For balanced data sets, the platform may achieve a reduction in execution time equal to the inverse of the number of back-end computational elements.


Neuron ◽  
2004 ◽  
Vol 42 (6) ◽  
pp. 993-1001 ◽  
Author(s):  
Tao Zhang ◽  
Hilary W. Heuer ◽  
Kenneth H. Britten

Author(s):  
Eline R. Kupers ◽  
Noah C. Benson ◽  
Jonathan Winawer

AbstractSynchronization of neuronal responses over large distances is hypothesized to be important for many cortical functions. However, no straightforward methods exist to estimate synchrony non-invasively in the living human brain. MEG and EEG measure the whole brain, but the sensors pool over large, overlapping cortical regions, obscuring the underlying neural synchrony. Here, we developed a model from stimulus to cortex to MEG sensors to disentangle neural synchrony from spatial pooling of the instrument. We find that synchrony across cortex has a surprisingly large and systematic effect on predicted MEG spatial topography. We then conducted visual MEG experiments and separated responses into stimulus-locked and broadband components. The stimulus-locked topography was similar to model predictions assuming synchronous neural sources, whereas the broadband topography was similar to model predictions assuming asynchronous sources. We infer that visual stimulation elicits two distinct types of neural responses, one highly synchronous and one largely asynchronous across cortex.


2011 ◽  
Vol 105 (4) ◽  
pp. 1825-1834 ◽  
Author(s):  
Pei Liang ◽  
Roland Kern ◽  
Rafael Kurtz ◽  
Martin Egelhaaf

It is still unclear how sensory systems efficiently encode signals with statistics as experienced by animals in the real world and what role adaptation plays during normal behavior. Therefore, we studied the performance of visual motion-sensitive neurons of blowflies, the horizontal system neurons, with optic flow that was reconstructed from the head trajectories of semi-free-flying flies. To test how motion adaptation is affected by optic flow dynamics, we manipulated the seminatural optic flow by targeted modifications of the flight trajectories and assessed to what extent neuronal responses to an object located close to the flight trajectory depend on adaptation dynamics. For all types of adapting optic flow object-induced response increments were stronger in the adapted compared with the nonadapted state. Adaptation with optic flow characterized by the typical alternation between translational and rotational segments produced this effect but also adaptation with optic flow that lacked these distinguishing features and even pure rotation at a constant angular velocity. The enhancement of object-induced response increments had a direction-selective component because preferred-direction rotation and natural optic flow were more efficient adaptors than null-direction rotation. These results indicate that natural dynamics of optic flow is not a basic requirement to adapt neurons in a specific, presumably functionally beneficial way. Our findings are discussed in the light of adaptation mechanisms proposed on the basis of experiments previously done with conventional experimenter-defined stimuli.


2014 ◽  
Vol 111 (8) ◽  
pp. 1671-1685 ◽  
Author(s):  
Paweł Kuśmierek ◽  
Josef P. Rauschecker

The respective roles of ventral and dorsal cortical processing streams are still under discussion in both vision and audition. We characterized neural responses in the caudal auditory belt cortex, an early dorsal stream region of the macaque. We found fast neural responses with elevated temporal precision as well as neurons selective to sound location. These populations were partly segregated: Neurons in a caudomedial area more precisely followed temporal stimulus structure but were less selective to spatial location. Response latencies in this area were even shorter than in primary auditory cortex. Neurons in a caudolateral area showed higher selectivity for sound source azimuth and elevation, but responses were slower and matching to temporal sound structure was poorer. In contrast to the primary area and other regions studied previously, latencies in the caudal belt neurons were not negatively correlated with best frequency. Our results suggest that two functional substreams may exist within the auditory dorsal stream.


1993 ◽  
Vol 70 (1) ◽  
pp. 444-447 ◽  
Author(s):  
S. S. Hsiao ◽  
D. M. O'Shaughnessy ◽  
K. O. Johnson

1. The effects of selective attention were studied in SI and SII cortex of a rhesus monkey trained to perform two tasks, a tactile discrimination task and a visual detection task. In the tactile task, a letter was displayed on a video screen in front of the monkey and the animal was rewarded for responding when the raised letter (6.0 mm letter height) scanning across its finger (15 mm/s) matched the letter on the screen. In the visual task, three illuminated squares were displayed on the screen, and the animal was rewarded for detecting when one of the squares dimmed. The neural responses evoked by the raised letters were recorded continuously while the animal's focus of attention was switched back and forth between the two tasks. 2. Significant differences between the discharge rates evoked by raised letters in the two tasks were observed in approximately 50% of neurons in SI cortex and 80% of neurons in SII cortex. The effects in SII cortex were divided between increased (58%) and decreased (22%) rates. In SI cortex only increased rates were observed. 3. The attentional effects were expressed not only as changes in overall neuronal activity but also as modifications of the form of the responses evoked by the letters. 4. Whether attentional effects were observed depended upon the behavioral relevance of individual letters. During brief periods in the tactile task when a behavioral response could not yield a reward (time-out and reward periods) the neuronal responses were not significantly different from the responses evoked by the same letters during the visual task.(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 81 (6) ◽  
pp. 3021-3033 ◽  
Author(s):  
M. W. Oram ◽  
M. C. Wiener ◽  
R. Lestienne ◽  
B. J. Richmond

Stochastic nature of precisely timed spike patterns in visual system neuronal responses. It is not clear how information related to cognitive or psychological processes is carried by or represented in the responses of single neurons. One provocative proposal is that precisely timed spike patterns play a role in carrying such information. This would require that these spike patterns have the potential for carrying information that would not be available from other measures such as spike count or latency. We examined exactly timed (1-ms precision) triplets and quadruplets of spikes in the stimulus-elicited responses of lateral geniculate nucleus (LGN) and primary visual cortex (V1) neurons of the awake fixating rhesus monkey. Large numbers of these precisely timed spike patterns were found. Information theoretical analysis showed that the precisely timed spike patterns carried only information already available from spike count, suggesting that the number of precisely timed spike patterns was related to firing rate. We therefore examined statistical models relating precisely timed spike patterns to response strength. Previous statistical models use observed properties of neuronal responses such as the peristimulus time histogram, interspike interval, and/or spike count distributions to constrain the parameters of the model. We examined a new stochastic model, which unlike previous models included all three of these constraints and unlike previous models predicted the numbers and types of observed precisely timed spike patterns. This shows that the precise temporal structures of stimulus-elicited responses in LGN and V1 can occur by chance. We show that any deviation of the spike count distribution, no matter how small, from a Poisson distribution necessarily changes the number of precisely timed spike patterns expected in neural responses. Overall the results indicate that the fine temporal structure of responses can only be interpreted once all the coarse temporal statistics of neural responses have been taken into account.


2018 ◽  
Author(s):  
P.E. Jercog ◽  
Y. Ahmadian ◽  
C. Woodruff ◽  
R. Deb-Sen ◽  
L.F. Abbott ◽  
...  

AbstractUtilizing electrophysiological recordings from CA1 pyramidal cells in freely moving mice, we find that a majority of neural responses are modulated by the heading-direction of the animal relative to a point within or outside their enclosure that we call a reference point. Our findings identify a novel representation in the neuronal responses in the dorsal hippocampus.


Sign in / Sign up

Export Citation Format

Share Document