scholarly journals Mean square displacement for a discrete centroid model of cell motion

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261021
Author(s):  
Mary Ellen Rosen ◽  
Christopher P. Grant ◽  
J. C. Dallon

The mean square displacement (MSD) is an important statistical measure on a stochastic process or a trajectory. In this paper we find an approximation to the mean square displacement for a model of cell motion. The model is a discrete-time jump process which approximates a force-based model for cell motion. In cell motion, the mean square displacement not only gives a measure of overall drift, but it is also an indicator of mode of transport. The key to finding the approximation is to find the mean square displacement for a subset of the state space and use it as an approximation for the entire state space. We give some intuition as to why this is an unexpectedly good approximation. A lower bound and upper bound for the mean square displacement are also given. We show that, although the upper bound is far from the computed mean square displacement, in rare cases the large displacements are approached.

Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 111
Author(s):  
Leonid M. Ivanov ◽  
Collins A. Collins ◽  
Tetyana Margolina

Using discrete wavelets, a novel technique is developed to estimate turbulent diffusion coefficients and power exponents from single Lagrangian particle trajectories. The technique differs from the classical approach (Davis (1991)’s technique) because averaging over a statistical ensemble of the mean square displacement (<X2>) is replaced by averaging along a single Lagrangian trajectory X(t) = {X(t), Y(t)}. Metzler et al. (2014) have demonstrated that for an ergodic (for example, normal diffusion) flow, the mean square displacement is <X2> = limT→∞τX2(T,s), where τX2 (T, s) = 1/(T − s) ∫0T−s(X(t+Δt) − X(t))2 dt, T and s are observational and lag times but for weak non-ergodic (such as super-diffusion and sub-diffusion) flows <X2> = limT→∞≪τX2(T,s)≫, where ≪…≫ is some additional averaging. Numerical calculations for surface drifters in the Black Sea and isobaric RAFOS floats deployed at mid depths in the California Current system demonstrated that the reconstructed diffusion coefficients were smaller than those calculated by Davis (1991)’s technique. This difference is caused by the choice of the Lagrangian mean. The technique proposed here is applied to the analysis of Lagrangian motions in the Black Sea (horizontal diffusion coefficients varied from 105 to 106 cm2/s) and for the sub-diffusion of two RAFOS floats in the California Current system where power exponents varied from 0.65 to 0.72. RAFOS float motions were found to be strongly non-ergodic and non-Gaussian.


1991 ◽  
Vol 46 (7) ◽  
pp. 616-620 ◽  
Author(s):  
Junko Habasaki

MD simulation has been performed to learn the microscopic mechanism of diffusion of ions in the Li2SiO3 system. The motion of lithium ions can be explained by the trapping model, where lithium is trapped in the polyhedron and moves with fluctuation of the coordination number. The mean square displacement of lithium was found to correlate well with the net changes in coordination number.


1994 ◽  
Vol 08 (24) ◽  
pp. 3411-3422 ◽  
Author(s):  
W. SCHOMMERS

The effect of premelting is of particular interest in connection with the theory of melting. In this paper, we discuss the structural and dynamical properties of the surfaces of semi-infinite crystals as well as of nano-clusters, which show the effect of premelting. The investigations are based on molecular-dynamics calculations: different models are used for the systematic study of the effect of premelting. In particular, the behaviour of the following functions have been studied: pair correlation function, generalized phonon density of states, and the mean-square displacement as a function of time. The calculations have been done for krypton since for this substance a reliable interaction potential is available.


2005 ◽  
Vol 72 (2) ◽  
pp. 213-221 ◽  
Author(s):  
R. Iwankiewicz ◽  
S. R. K. Nielsen ◽  
J. W. Larsen

A dynamic system under parametric excitation in the form of a non-Erlang renewal jump process is considered. The excitation is a random train of nonoverlapping rectangular pulses with equal, deterministic heights. The time intervals between two consecutive jumps up (or down), are the sum of two independent, negative exponential distributed variables; hence, the arrival process may be termed as a generalized Erlang renewal process. The excitation process is governed by the stochastic equation driven by two independent Poisson processes, with different parameters. If the response in a single mode is investigated, the problem is governed in the state space by two stochastic equations, because the stochastic equation for the excitation process is autonomic. However, due to the parametric nature of the excitation, the nonlinear term appears at the right-hand sides of the equations. The equations become linear if the state space is augmented by the products of the original state variables and the excitation variable. Asymptotic mean and mean-square stability as well as asymptotic sample (Lyapunov) stability with probability 1 are investigated. The Lyapunov exponents have been evaluated both by the direct simulation of the stochastic equation governing the natural logarithm of the hyperspherical amplitude process and using the modification of the method wherein the time averaging of the pertinent expressions is replaced by ensemble averaging. It is found that the direct simulation is more suitable and that the asymptotic mean-square stability condition is not overly conservative.


2018 ◽  
Vol 32 (19) ◽  
pp. 1850210
Author(s):  
Chun-Yang Wang ◽  
Zhao-Peng Sun ◽  
Ming Qin ◽  
Yu-Qing Xu ◽  
Shu-Qin Lv ◽  
...  

We report, in this paper, a recent study on the dynamical mechanism of Brownian particles diffusing in the fractional damping environment, where several important quantities such as the mean square displacement (MSD) and mean square velocity are calculated for dynamical analysis. A particular type of backward motion is found in the diffusion process. The reason of it is analyzed intrinsically by comparing with the diffusion in various dissipative environments. Results show that the diffusion in the fractional damping environment obeys the Langevin dynamics which is quite different form what is expected.


1977 ◽  
Vol 44 (3) ◽  
pp. 487-491 ◽  
Author(s):  
S. F. Masri ◽  
F. Udwadia

The transient mean-square displacement, slope, and relative motion of a viscously damped shear beam subjected to correlated random boundary excitation is presented. The effects of various system parameters including the spectral characteristics of the excitation, the delay time between the beam support motion, and the beam damping have been investigated. Marked amplifications in the mean-square response are shown to occur for certain dimensionless time delays.


Sign in / Sign up

Export Citation Format

Share Document