scholarly journals Chemokine Binding Protein M3 of Murine Gammaherpesvirus 68 Modulates the Host Response to Infection in a Natural Host

2011 ◽  
Vol 7 (3) ◽  
pp. e1001321 ◽  
Author(s):  
David J. Hughes ◽  
Anja Kipar ◽  
Gail H. Leeming ◽  
Elaine Bennett ◽  
Deborah Howarth ◽  
...  
2003 ◽  
Vol 77 (15) ◽  
pp. 8588-8592 ◽  
Author(s):  
Louise M. C. Webb ◽  
Ian Clark-Lewis ◽  
Antonio Alcami

ABSTRACT Viruses encode proteins that disrupt chemokine responses. The murine gammaherpesvirus 68 gene M3 encodes a chemokine binding protein (vCKBP-3) which has no sequence similarity to chemokine receptors but inhibits chemokine receptor binding and activity. We have used a panel of CXCL8 analogs to identify the structural requirements for CXCL8 to bind to vCKBP-3 in a scintillation proximity assay. Our data suggest that vCKBP-3 acts by mimicking the binding of chemokine receptors to CXCL8.


Neuropeptides ◽  
2011 ◽  
Vol 45 (1) ◽  
pp. 49-53 ◽  
Author(s):  
John P. Quinn ◽  
Anja Kipar ◽  
David J. Hughes ◽  
Elaine Bennett ◽  
Helen Cox ◽  
...  

2010 ◽  
Vol 84 (8) ◽  
pp. 3949-3961 ◽  
Author(s):  
David J. Hughes ◽  
Anja Kipar ◽  
Jeffery T. Sample ◽  
James P. Stewart

ABSTRACT Murine gammaherpesvirus 68 (MHV-68) infection of laboratory mice (Mus musculus) is an established model of gammaherpesvirus pathogenesis. The fact that M. musculus is not a host in the wild prompted us to reassess MHV-68 infection in wood mice (Apodemus sylvaticus), a natural host. Here, we report significant differences in MHV-68 infection in the two species: (i) following intranasal inoculation, MHV-68 replicated in the lungs of wood mice to levels approximately 3 log units lower than in BALB/c mice; (ii) in BALB/c mice, virus replication in alveolar epithelial cells was accompanied by a diffuse, T-cell-dominated interstitial pneumonitis, whereas in wood mice it was restricted to focal granulomatous infiltrations; (iii) within wood mice, latently infected lymphocytes were abundant in inducible bronchus-associated lymphoid tissue that was not apparent in BALB/c mice; (iv) splenic latency was established in both species, but well-delineated secondary follicles with germinal centers were present in wood mice, while only poorly delineated follicles were seen in BALB/c mice; and, perhaps as a consequence, (v) production of neutralizing antibody was significantly higher in wood mice. These differences highlight the value of this animal model in the study of MHV-68 pathogenesis.


2000 ◽  
Vol 191 (3) ◽  
pp. 573-578 ◽  
Author(s):  
Christopher M. Parry ◽  
J. Pedro Simas ◽  
Vincent P. Smith ◽  
C. Andrew Stewart ◽  
Anthony C. Minson ◽  
...  

Chemokines are a family of small proteins that interact with seven-transmembrane domain receptors and modulate the migration of immune cells into sites of inflammation and infection. The murine gammaherpesvirus 68 M3 gene encodes a secreted 44-kD protein with no sequence similarity to known chemokine receptors. We show that M3 binds a broad range of chemokines, including CC, CXC, C, and CX3C chemokines, but does not bind human B cell–specific nor mouse neutrophil–specific CXC chemokines. This herpesvirus chemokine binding protein (hvCKBP) blocks the interaction of chemokines with high-affinity cellular receptors and inhibits chemokine-induced elevation of intracellular calcium levels. hvCKBP is the first soluble chemokine receptor identified in herpesviruses; it represents a novel protein structure with the ability to bind all subfamilies of chemokines in solution and has potential therapeutic applications.


2001 ◽  
Vol 194 (3) ◽  
pp. 301-312 ◽  
Author(s):  
Anne Bridgeman ◽  
Philip G. Stevenson ◽  
J. Pedro Simas ◽  
Stacey Efstathiou

Herpesviruses encode a variety of proteins with the potential to disrupt chemokine signaling, and hence immune organization. However, little is known of how these might function in vivo. The B cell–tropic murine gammaherpesvirus-68 (MHV-68) is related to the Kaposi's sarcoma–associated herpesvirus (KSHV), but whereas KSHV expresses small chemokine homologues, MHV-68 encodes a broad spectrum chemokine binding protein (M3). Here we have analyzed the effect on viral pathogenesis of a targeted disruption of the M3 gene. After intranasal infection, an M3 deficiency had surprisingly little effect on lytic cycle replication in the respiratory tract or the initial spread of virus to lymphoid tissues. However, the amplification of latently infected B cells in the spleen that normally drives MHV-68–induced infectious mononucleosis failed to occur. Thus, there was a marked reduction in latent virus recoverable by in vitro reactivation, latency-associated viral tRNA transcripts detectable by in situ hybridization, total viral DNA load, and virus-driven B cell activation. In vivo CD8+ T cell depletion largely reversed this deficiency, suggesting that the chemokine neutralization afforded by M3 may function to block effective CD8+ T cell recruitment into lymphoid tissue during the expansion of latently infected B cell numbers. In the absence of M3, MHV-68 was unable to establish a normal latent load.


Autoimmunity ◽  
2013 ◽  
Vol 46 (6) ◽  
pp. 399-408 ◽  
Author(s):  
Vinita S. Chauhan ◽  
Daniel A. Nelson ◽  
Ian Marriott ◽  
Kenneth L. Bost

2010 ◽  
Vol 84 (6) ◽  
pp. 2881-2892 ◽  
Author(s):  
Michael L. Freeman ◽  
Kathleen G. Lanzer ◽  
Tres Cookenham ◽  
Bjoern Peters ◽  
John Sidney ◽  
...  

ABSTRACT Murine gammaherpesvirus 68 (γHV68) provides an important experimental model for understanding mechanisms of immune control of the latent human gammaherpesviruses. Antiviral CD8 T cells play a key role throughout three separate phases of the infection: clearance of lytic virus, control of the latency amplification stage, and prevention of reactivation of latently infected cells. Previous analyses have shown that T-cell responses to two well-characterized epitopes derived from ORF6 and ORF61 progress with distinct kinetics. ORF6487-specific cells predominate early in infection and then decline rapidly, whereas ORF61524-specific cells continue to expand through early latency, due to sustained epitope expression. However, the paucity of identified epitopes to this virus has limited our understanding of the overall complexities of CD8 T-cell immune control throughout infection. Here we screened 1,383 predicted H-2b-restricted peptides and identified 33 responses, of which 21 have not previously been reported. Kinetic analysis revealed a spectrum of T-cell responses based on the rapidity of their decline after the peak acute response that generally corresponded to the expression patterns of the two previously characterized epitopes. The slowly declining responses that were maintained during latency amplification proliferated more rapidly and underwent maturation of functional avidity over time. Furthermore, the kinetics of decline was accelerated following infection with a latency-null mutant virus. Overall, the data show that γHV68 infection elicits a highly heterogeneous CD8 T-cell response that segregates into two distinctive kinetic patterns controlled by differential epitope expression during the lytic and latency amplification stages of infection.


Sign in / Sign up

Export Citation Format

Share Document