scholarly journals Kaposi's Sarcoma-Associated Herpesvirus K-Rta Exhibits SUMO-Targeting Ubiquitin Ligase (STUbL) Like Activity and Is Essential for Viral Reactivation

2013 ◽  
Vol 9 (8) ◽  
pp. e1003506 ◽  
Author(s):  
Yoshihiro Izumiya ◽  
Keisuke Kobayashi ◽  
Kevin Y. Kim ◽  
Mamata Pochampalli ◽  
Chie Izumiya ◽  
...  
2002 ◽  
Vol 76 (23) ◽  
pp. 12185-12199 ◽  
Author(s):  
Bok-Soo Lee ◽  
Mini Paulose-Murphy ◽  
Young-Hwa Chung ◽  
Michelle Connlole ◽  
Steven Zeichner ◽  
...  

ABSTRACT The K1 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic region and elicits cellular signal transduction through this motif. To investigate the role of K1 signal transduction in KSHV replication, we expressed full-length K1 and CD8-K1 chimeras in BCBL1 cells. Unlike its strong signaling activity in uninfected B lymphocytes, K1 did not induce intracellular calcium mobilization or NF-AT activation at detectable levels in KSHV-infected BCBL1 cells. Instead, K1 signaling dramatically suppressed KSHV lytic reactivation induced by tetradecanoyl phorbol acetate (TPA) stimulation, but not by ORF50 ectopic expression. Mutational analysis showed that the cytoplasmic ITAM sequence of K1 was required for this suppression. Viral microarray and immunoblot analyses demonstrated that K1 signaling suppressed the TPA-mediated increase in the expression of a large subset of viral lytic genes in KSHV-infected BCBL1 cells. Furthermore, electrophoretic mobility shift assays demonstrated that TPA-induced activation of AP-1, NF-κB, and Oct-1 activities was severely diminished in BCBL1 cells expressing the K1 cytoplasmic domain. The reduced activities of these transcription factors may confer the observed reduction in viral lytic gene expression. These results demonstrate that K1-mediated signal transduction in KSHV-infected cells is profoundly different from that in KSHV-negative cells. Furthermore, K1 signal transduction efficiently suppresses TPA-mediated viral reactivation in an ITAM-dependent manner, and this suppression may contribute to the establishment and/or maintenance of KSHV latency in vivo.


2008 ◽  
Vol 82 (7) ◽  
pp. 3590-3603 ◽  
Author(s):  
Zhilong Yang ◽  
Zhangcai Yan ◽  
Charles Wood

ABSTRACT Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8) RTA is an important protein involved in the induction of KSHV lytic replication from latency through activation of the lytic cascade. A number of cellular and viral proteins, including K-RBP, have been found to repress RTA-mediated transactivation and KSHV lytic replication. However, it is unclear as to how RTA overcomes the suppression during lytic reactivation. In this study, we found that RTA can induce K-RBP degradation through the ubiquitin-proteasome pathway and that two regions in RTA are responsible. Moreover, we found that RTA can promote the degradation of several other RTA repressors. RTA mutants that are defective in inducing K-RBP degradation cannot activate RTA responsive promoter as efficiently as wild-type RTA. Interference of the ubiquitin-proteasome pathway affected RTA-mediated transactivation and KSHV reactivation from latency. Our results suggest that KSHV RTA can stimulate the turnover of repressors to modulate viral reactivation. Since herpes simplex virus type 1 transactivator ICP0 and human cytomegalovirus transactivator pp71 also stimulate the degradation of cellular silencers, it is possible that the promotion of silencer degradation by viral transactivators may be a common mechanism for regulating the lytic replication of herpesviruses.


2007 ◽  
Vol 81 (12) ◽  
pp. 6573-6583 ◽  
Author(s):  
Robert E. Means ◽  
Sabine M. Lang ◽  
Jae U. Jung

ABSTRACT Kaposi's sarcoma-associated herpesvirus encodes two highly related membrane-associated, RING-CH-containing (MARCH) family E3 ubiquitin ligases, K3 and K5, that can down regulate a variety of cell surface proteins through enhancement of their endocytosis and degradation. In this report we present data that while K5 modulation of major histocompatibility complex class I (MHC-I) closely mirrors the mechanisms used by K3, alternative molecular pathways are utilized by this E3 ligase in the down regulation of intercellular adhesion molecule 1 (ICAM-1) and B7.2. Internalization assays demonstrate that down regulation of each target can occur through increased endocytosis from the cell surface. However, mutation of a conserved tyrosine-based endocytosis motif in K5 resulted in a protein lacking the ability to direct an increased rate of MHC-I or ICAM-1 internalization but still able to down regulate B7.2 in a ubiquitin-dependent but endocytosis-independent manner. Further, mutation of two acidic clusters abolished K5-mediated MHC-I degradation while only slightly decreasing ICAM-1 or B7.2 protein destruction. This same mutant abolished detectable ubiquitylation of all targets. These data indicate that while K5 can act as an E3 ubiquitin ligase to directly mediate cell surface molecule destruction, regulation of its targets occurs through multiple pathways, including ubiquitin-independent mechanisms.


2006 ◽  
Vol 80 (19) ◽  
pp. 9697-9709 ◽  
Author(s):  
Kyla Driscoll Carroll ◽  
Wei Bu ◽  
Diana Palmeri ◽  
Sophia Spadavecchia ◽  
Stephen J. Lynch ◽  
...  

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) lytic switch protein, Rta, is a ligand-independent inducer of the Notch signal transduction pathway, and KSHV cannot reactivate from latency in cells null for the Notch target protein RBP-Jk. Here we show that Rta promotes DNA binding of RBP-Jk, a mechanism that is fundamentally different from that established for the RBP-Jk-activating proteins, Notch intracellular domain (NICD) and Epstein-Barr virus EBNA2. Although constitutively active RBP-Jk and NICD do not transactivate KSHV promoters independently, cotransfection of an Rta mutant lacking its transactivation domain robustly restores transcriptional activation. Cooperation requires intact DNA binding sites for Rta and RBP-Jk and trimeric complex formation between the three molecules in vitro. In infected cells, RBP-Jk is virtually undetectable on a series of viral and cellular promoters during KSHV latency but is significantly enriched following Rta expression during viral reactivation. Accordingly, Rta, but not EBNA2 and NICD, reactivates the complete viral lytic cycle.


2007 ◽  
Vol 81 (24) ◽  
pp. 13299-13314 ◽  
Author(s):  
Diana Palmeri ◽  
Sophia Spadavecchia ◽  
Kyla Driscoll Carroll ◽  
David M. Lukac

ABSTRACT The Kaposi's sarcoma-associated herpesvirus (KSHV) Mta protein, encoded by open reading frame 57, is a transactivator of gene expression that is essential for productive viral replication. Previous studies have suggested both transcriptional and posttranscriptional roles for Mta, but little is known regarding Mta's transcriptional function. In this study, we demonstrate that Mta cooperates with the KSHV lytic switch protein, Rta, to reactivate KSHV from latency, but Mta has little effect on reactivation when expressed alone. We demonstrate that the Mta and Rta proteins are expressed with similar but distinct kinetics during KSHV reactivation. In single-cell analyses, Mta expression coincides tightly with progression to full viral reactivation. We demonstrate with promoter reporter assays that while Rta activates transcription in all cell lines tested, Mta's ability to transactivate promoters, either alone or synergistically with Rta, is cell and promoter specific. In particular, Mta robustly transactivates the nut-1/PAN promoter independently of Rta in 293 and Akata-31 cells. Using nuclear run-on assays, we demonstrate that Mta stimulates transcriptional initiation in 293 cells. Rta and Mta physically interact in infected cell extracts, and this interaction requires the intact leucine repeat and central region of Rta in vitro. We demonstrate that Mta also binds to the nut-1/PAN promoter DNA in vitro and in infected cells. An Mta mutant with a lesion in a putative A/T hook domain is altered in DNA binding and debilitated in transactivation. We propose that one molecular mechanism of Mta-mediated transactivation is a direct effect on transcription by direct and indirect promoter association.


2003 ◽  
Vol 77 (17) ◽  
pp. 9399-9411 ◽  
Author(s):  
Wei Liao ◽  
Yong Tang ◽  
Yu-liang Kuo ◽  
Bao-Ying Liu ◽  
Chi-Jie Xu ◽  
...  

ABSTRACT Kaposi's sarcoma associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) encodes an immediate early transcriptional activator, Rta, which mediates viral reactivation from latency and lytic viral replication. Here we report the purification and characterizations of HHV-8 Rta and its interaction with Rta-responsive DNA elements. The Rta response element (RtaRE) in the promoter of the KSHV/HHV-8 K8 open reading frame was mapped to a 47-bp sequence (RtaRE1) and a 60-bp sequence (RtaRE2) upstream of the TATA motif. A comparison of the K8 RtaREs with other viral RtaREs revealed a pattern of multiple A/T triplets spaced with a periodicity of 10 or 20 bp. Substitutions of the in-phase A/T trinucleotides of the RtaRE1 with G/C bases greatly diminished Rta responsiveness and Rta binding. By contrast, base substitutions in an out-of-phase A/T-trinucleotide sequence had no effect. Importantly, multimers of (A/T)3N7 and N5(A/T)5N6(A/T)4 motifs supported a strong Rta response in a copy number-dependent manner. No specific sequence motifs in the spacer regions could be discerned. Potent Rta response, however, was obtained with phased A/T trinucleotides with 7-bp spacers of arbitrary sequences with high G/C content. Lengthening of the phased A/T motifs or lowering of the G/C content of the spacers resulted in a reduction in Rta response. Finally, Escherichia coli-derived Rta is an oligomer of 440 kDa in molecular size and binds RtaRE as an oligomer. These results support a model of Rta transactivation wherein the subunits of the Rta oligomer make multiple contacts with a tandem array of phased A/T triplets in the configuration of (A/T)3(G/C)7 repeats.


2002 ◽  
Vol 76 (12) ◽  
pp. 6213-6223 ◽  
Author(s):  
Farnaz D. Fakhari ◽  
Dirk P. Dittmer

ABSTRACT The division into a latent or lytic life cycle is fundamental to all herpesviridae. In the case of Kaposi's sarcoma-associated herpesvirus (KSHV) (human herpesvirus 8), latent genes have been implicated in cell autonomous transformation, while certain lytic genes procure a tumor friendly milieu through paracrine mechanism. To query KSHV transcription, we devised and validated a high-throughput, high-specificity, high-sensitivity, real-time quantitative reverse transcription-PCR array. This novel methodology is applicable to many human pathogens. Its first use demonstrated that the mRNA levels for KSHV LANA, v-cyclin, and v-FLIP do not increase at any time after viral reactivation. The mRNA for LANA-2/vIRF-3 is similarly resistant to viral reactivation. In contrast, every other latent or lytic message was induced. Hence, LANA, v-FLIP, v-cyclin, and LANA-2 constitute a group of uniquely regulated transcripts in the KSHV genome.


2017 ◽  
Vol 91 (19) ◽  
Author(s):  
Pey-Jium Chang ◽  
Lee-Wen Chen ◽  
Li-Yu Chen ◽  
Chien-Hui Hung ◽  
Ying-Ju Shih ◽  
...  

ABSTRACT The switch of Kaposi's sarcoma-associated herpesvirus (KSHV) from latency to lytic replication is a key event for viral dissemination and pathogenesis. MLN4924, a novel neddylation inhibitor, reportedly causes the onset of KSHV reactivation but impairs later phases of the viral lytic program in infected cells. Thus far, the molecular mechanism involved in the modulation of the KSHV lytic cycle by MLN4924 is not yet fully understood. Here, we confirmed that treatment of different KSHV-infected primary effusion lymphoma (PEL) cell lines with MLN4924 substantially induces viral lytic protein expression. Due to the key role of the virally encoded ORF50 protein in the latent-to-lytic switch, we investigated its transcriptional regulation by MLN4924. We found that MLN4924 activates the ORF50 promoter (ORF50p) in KSHV-positive cells (but not in KSHV-negative cells), and the RBP-Jκ-binding elements within the promoter are critically required for MLN4924 responsiveness. In KSHV-negative cells, reactivation of the ORF50 promoter by MLN4924 requires the presence of the latency-associated nuclear antigen (LANA). Under such a condition, LANA acts as a repressor to block the ORF50p activity, whereas MLN4924 treatment relieves LANA-mediated repression. Importantly, we showed that LANA is a neddylated protein and can be deneddylated by MLN4924. On the other hand, we revealed that MLN4924 exhibits concentration-dependent biphasic effects on 12-O-tetradecanoylphorbol-13-acetate (TPA)- or sodium butyrate (SB)-induced viral reactivation in PEL cell lines. In other words, low concentrations of MLN4924 promote activation of TPA- or SB-mediated viral reactivation, whereas high concentrations of MLN4924, conversely, inhibit the progression of TPA- or SB-mediated viral lytic program. IMPORTANCE MLN4924 is a neddylation (NEDD8 modification) inhibitor, which currently acts as an anti-cancer drug in clinical trials. Although MLN4924 has been reported to trigger KSHV reactivation, many aspects regarding the action of MLN4924 in regulating the KSHV lytic cycle are not fully understood. Since the KSHV ORF50 protein is the key regulator of viral lytic reactivation, we focus on its transcriptional regulation by MLN4924. We here show that activation of the ORF50 gene by MLN4924 involves the relief of LANA-mediated transcriptional repression. Importantly, we find that LANA is a neddylated protein. To our knowledge, this is the first report showing that neddylation occurs in viral proteins. Additionally, we provide evidence that different concentrations of MLN4924 have opposite effects on TPA-mediated or SB-mediated KSHV lytic cycle activation. Therefore, in clinical application, we propose that MLN4924 needs to be used with caution in combination therapy to treat KSHV-positive subjects.


1999 ◽  
Vol 73 (7) ◽  
pp. 5556-5567 ◽  
Author(s):  
Fan Xiu Zhu ◽  
Teresa Cusano ◽  
Yan Yuan

ABSTRACT In the immediate-early phase of reactivation or primary infection, herpesviruses express a small number of genes without requiring prior viral protein synthesis. Immediate-early genes usually encode regulatory proteins critical for the viral life cycle. Kaposi’s sarcoma-associated herpesvirus (KSHV) gene transcription in the immediate-early stage of viral reactivation was examined by using a chemical induction combined with a gene expression screening method. RNA transcripts from at least four KSHV genomic loci accumulate when latently infected B-lymphoma cells are induced for reactivation in the presence of an inhibitor of protein synthesis (cycloheximide) and thus represent immediate-early class transcripts. Among them, a 3.6-kb mRNA encodes three putative open reading frames (ORFs), namely, ORF50, K8, and K8.2. ORF50 is a homologue of Rta, a transcription activator encoded by Epstein-Barr virus (EBV). The K8 gene codes for a 237-amino-acid protein with a basic-leucine zipper domain near its C terminus and an acidic domain near its N terminus and which closely resembles the ZEBRA protein of EBV and Jun/Fos family proteins. Other immediate-early mRNAs of KSHV include a 1.7-kb mRNA encoding ORF45, a 2.0-kb mRNA encoding ORF K4.2, and a 4.5-kb mRNA. Functional roles of products of these KSHV immediate-early transcripts remain to be studied.


Sign in / Sign up

Export Citation Format

Share Document