scholarly journals Glutamate Secretion and Metabotropic Glutamate Receptor 1 Expression during Kaposi's Sarcoma-Associated Herpesvirus Infection Promotes Cell Proliferation

2014 ◽  
Vol 10 (10) ◽  
pp. e1004389 ◽  
Author(s):  
Mohanan Valiya Veettil ◽  
Dipanjan Dutta ◽  
Virginie Bottero ◽  
Chirosree Bandyopadhyay ◽  
Olsi Gjyshi ◽  
...  
2009 ◽  
Vol 83 (14) ◽  
pp. 7129-7141 ◽  
Author(s):  
Jie Lu ◽  
Subhash C. Verma ◽  
Masanao Murakami ◽  
Qiliang Cai ◽  
Pankaj Kumar ◽  
...  

ABSTRACT Survivin is a master regulator of cell proliferation and cell viability and is highly expressed in most human tumors. The molecular network linked to survivin expression in tumors has not been completely elucidated. In this study, we show that latency-associated nuclear antigen (LANA), a multifunctional protein of Kaposi's sarcoma-associated herpesvirus (KSHV) that is found in Kaposi's sarcoma tumors, upregulates survivin expression and increases the proliferation of KSHV-infected B cells. Analysis of pathway-specific gene arrays showed that survivin expression was highly upregulated in BJAB cells expressing LANA. The mRNA levels of survivin were also upregulated in HEK 293 and BJAB cells expressing LANA. Similarly, protein levels of survivin were significantly higher in LANA-expressing, as well as KSHV-infected, cells. Survivin promoter activity assays identified GC/Sp1 and p53 cis-acting elements within the core promoter region as being important for LANA activity. Gel mobility shift assays revealed that LANA forms a complex with Sp1 or Sp1-like proteins bound to the GC/Sp1 box of the survivin promoter. In addition, a LANA/p53 complex bound to the p53 cis-acting element within the survivin promoter, indicating that upregulation of survivin expression can also occur through suppression of p53 function. Furthermore, immunohistochemistry analyses revealed that survivin expression was upregulated in KSHV-associated Kaposi's sarcoma tissue, suggesting that LANA plays an important role in the upregulation of survivin expression in KSHV-infected endothelial cells. Knockdown of survivin expression by lentivirus-delivered small hairpin RNA resulted in loss of cell proliferation in KSHV-infected cells. Therefore, upregulation of survivin expression in KSHV-associated human cells contributes to their proliferation.


2014 ◽  
Vol 95 (8) ◽  
pp. 1770-1782 ◽  
Author(s):  
Lia R. Walker ◽  
Hosni A. M. Hussein ◽  
Shaw M. Akula

Kaposi's sarcoma-associated herpesvirus (KSHV) glycoprotein B (gB) is a lytic structural protein expressed on the envelope of mature virions and on the membrane of cells supporting lytic infection. In addition to this viral glycoprotein’s interaction with integrins via its RGD (Arg-Gly-Asp) motif, KSHV gB possesses a disintegrin-like domain (DLD), which binds integrins as well. Prior to this study, there has been minimal research involving the less common integrin-binding motif, DLD, of gB as it pertains to herpesvirus infection. By using phage display peptide library screening and molecular biology techniques, the DLD of KSHV gB was shown to interact specifically with non-RGD binding α9β1 integrins. Similarly, monitoring wild-type infection confirmed α9β1:DLD interactions to be critical to successful KSHV infection of human foreskin fibroblast (HFF) cells and human dermal microvascular endothelial cells (HMVEC-d) compared with 293 cells. To further demonstrate the importance of the DLD of gB in KSHV infection, two recombinant virus constructs were generated using a bacterial artificial chromosome (BAC) system harbouring the KSHV genome (BAC36): BAC36ΔD-KSHV (lacking a functionally intact DLD of gB and containing an introduced tetracycline cassette) and BAC36.T-KSHV (containing an intact DLD sequence and an introduced tetracycline cassette). Accordingly, BAC36ΔD-KSHV presented significantly lower infection rates in HFF and HMVEC-d cells compared with the comparable infection rates achieved by wild-type BAC36-KSHV and BAC36.T-KSHV. Thus, the present report has delineated a critical role for the DLD of gB in KSHV infection, which may lead to a broader knowledge regarding the sophisticated mechanisms utilized by virus-encoded structural proteins in KSHV entry and infection.


AIDS ◽  
2003 ◽  
Vol 17 (3) ◽  
pp. 425-433 ◽  
Author(s):  
James J Goedert ◽  
Manhattan Charurat ◽  
William A Blattner ◽  
Ronald C Hershow ◽  
Jane Pitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document