scholarly journals Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity

2020 ◽  
Vol 16 (5) ◽  
pp. e1008572 ◽  
Author(s):  
Heather L. Mercer ◽  
Lindsay M. Snyder ◽  
Claire M. Doherty ◽  
Barbara A. Fox ◽  
David J. Bzik ◽  
...  
Parasitology ◽  
1999 ◽  
Vol 119 (3) ◽  
pp. 259-265 ◽  
Author(s):  
D. J. P. FERGUSON ◽  
D. JACOBS ◽  
E. SAMAN ◽  
J-F. DUBREMETZ ◽  
S. E. WRIGHT

The in vivo expression and distribution of the dense granule protein GRA7 was examined in both the exoenteric (tachyzoite and bradyzoite) and enteric (coccidian) forms of Toxoplasma gondii by immunocytochemistry. There was strong staining of GRA7 in granules within all the infectious stages (tachyzoite, bradyzoite, merozoite and sporozoite). During tachyzoite development, GRA7 was secreted and was associated with the parasitophorous vacuole. In contrast, although there was staining of granules within the bradyzoites of more mature cysts, there appeared to be little staining of the tissue cyst wall or host cell. The apparent stage-specific variation in secretion of GRA7 between tachyzoites and bradyzoites was confirmed by double labelling using stage-specific markers (SAG1 and BAG1). In the enteric forms in the cat gut there was strong labelling of the PV containing early asexual and sexual stages and staining of a few granules in the apical cytoplasm of the merozoite. The positive enteric staining pattern differentiates GRA7 from the other GRA proteins (GRA1–6) which were absent in the merozoites and enteric stages. The staining pattern of GRA7 with strong staining during tachyzoite and enteric development and reduced staining in the tissue cysts is similar to that seen for NTPases. The function of GRA7 is unknown but it is unique among the dense granule proteins in being expressed in all the infectious forms of T. gondii which would point to a basic role in the vacuolar adaptations required for active parasite development.


2021 ◽  
Author(s):  
Joshua Mayoral ◽  
Rebekah B. Guevara ◽  
Yolanda Rivera-Cuevas ◽  
Vincent Tu ◽  
Tadakimi Tomita ◽  
...  

The intracellular parasite Toxoplasma gondii adapts to diverse host cell environments within a replicative compartment that is heavily decorated by secreted proteins. In attempts to identify novel parasite secreted proteins that influence host cell activity, we identified and characterized a trans-membrane dense granule protein dubbed GRA64 (TGME49_202620). We found that GRA64 is on the parasitophorous vacuolar membrane (PVM) and is partially exposed to the host cell cytoplasm in both tachyzoite and bradyzoite parasitophorous vacuoles. Using co-immunoprecipitation and proximity-based biotinylation approaches, we demonstrate that GRA64 appears to interact with certain components of the host Endosomal Sorting Complexes Required for Transport (ESCRT). Genetic disruption of GRA64 does not affect acute Toxoplasma virulence in mice nor encystation as observed via tissue cyst burdens in mice during chronic infection. However, ultrastructural analysis of Dgra64 tissue cysts using electron tomography revealed enlarged vesicular structures underneath the cyst membrane, suggesting a role for GRA64 in organizing the recruitment of ESCRT proteins and subsequent intracystic vesicle formation. This study uncovers a novel host-parasite interaction that contributes to an emerging paradigm in which specific host ESCRT proteins are recruited to the limiting membranes (PVMs) of tachyzoite and bradyzoite vacuoles formed during acute and chronic Toxoplasma infection.


2020 ◽  
Vol 22 (8) ◽  
pp. 375-378 ◽  
Author(s):  
Qila Sa ◽  
Corinne Mercier ◽  
Marie-France Cesbron-Delauw ◽  
Yasuhiro Suzuki

2019 ◽  
Vol 229 ◽  
pp. 53-61 ◽  
Author(s):  
Huanping Guo ◽  
Yang Gao ◽  
Honglin Jia ◽  
Paul Franck Adjou Moumouni ◽  
Tatsunori Masatani ◽  
...  

2011 ◽  
Vol 208 (1) ◽  
pp. 195-212 ◽  
Author(s):  
Emily E. Rosowski ◽  
Diana Lu ◽  
Lindsay Julien ◽  
Lauren Rodda ◽  
Rogier A. Gaiser ◽  
...  

NF-κB is an integral component of the immune response to Toxoplasma gondii. Although evidence exists that T. gondii can directly modulate the NF-κB pathway, the parasite-derived effectors involved are unknown. We determined that type II strains of T. gondii activate more NF-κB than type I or type III strains, and using forward genetics we found that this difference is a result of the polymorphic protein GRA15, a novel dense granule protein which T. gondii secretes into the host cell upon invasion. A GRA15-deficient type II strain has a severe defect in both NF-κB nuclear translocation and NF-κB–mediated transcription. Furthermore, human cells expressing type II GRA15 also activate NF-κB, demonstrating that GRA15 alone is sufficient for NF-κB activation. Along with the rhoptry protein ROP16, GRA15 is responsible for a large part of the strain differences in the induction of IL-12 secretion by infected mouse macrophages. In vivo bioluminescent imaging showed that a GRA15-deficient type II strain grows faster compared with wild-type, most likely through its reduced induction of IFN-γ. These results show for the first time that a dense granule protein can modulate host signaling pathways, and dense granule proteins can therefore join rhoptry proteins in T. gondii’s host cell–modifying arsenal.


2015 ◽  
Vol 18 (2) ◽  
pp. 244-259 ◽  
Author(s):  
Thomas Hermanns ◽  
Urs B. Müller ◽  
Stephanie Könen‐Waisman ◽  
Jonathan C. Howard ◽  
Tobias Steinfeldt

Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Tanjila Hasan ◽  
Ryo Kawanishi ◽  
Hidetaka Akita ◽  
Yoshifumi Nishikawa

Toxoplasma gondii affects the health of humans and livestock and causes severe illness in the fetus and immunocompromised individuals. Because of the high incidence and severe consequences of T. gondii infection, a safe and suitable vaccine is needed. We found that lipid nanoparticles (LNPs) consisting of a series of functional materials prepared with vitamin E, such as SS-cleavable and pH-activated lipid-like materials (ssPalmE), were a safe and efficient way to develop next-generation DNA vaccines. In this study, we prepared ssPalmE-LNP to encapsulate pCpG-free-T. gondii dense granule protein 15 DNA (ssPalmE-LNPTgGRA15). Following a challenge infection with avirulent PLK strain of T. gondii, the mice immunized with ssPalmE-LNPTgGRA15 had a significantly higher survival rate and lower clinical scores compared with unimmunized and ssPalmE-LNPnon-coding-immunized mice. Immunization of mice with the ssPalmE-LNPTgGRA15 led to a significantly higher production of specific IgG1 and IG2c antibodies compared with unimmunized and ssPalmE-LNPnon-coding-immunized mice, while there was no statistically significant difference in the concentration of serum interferon-gamma at the acute stage of the infection. These findings indicate that ssPalmE-LNP is an effective cargo for the transportation of DNA vaccines for protozoan infections. To explore the mechanism of protective immunity induced by ssPalmE-LNPTgGRA15, further immunological study is needed in the future.


Sign in / Sign up

Export Citation Format

Share Document