scholarly journals Correction: pUL21 is a viral phosphatase adaptor that promotes herpes simplex virus replication and spread

2022 ◽  
Vol 18 (1) ◽  
pp. e1010225
Author(s):  
Tomasz H. Benedyk ◽  
Julia Muenzner ◽  
Viv Connor ◽  
Yue Han ◽  
Katherine Brown ◽  
...  
2021 ◽  
Vol 188 ◽  
pp. 105022
Author(s):  
Diana M. Alvarez ◽  
Luisa F. Duarte ◽  
Nicolas Corrales ◽  
Patricio C. Smith ◽  
Pablo A. González

2009 ◽  
Vol 83 (23) ◽  
pp. 12399-12406 ◽  
Author(s):  
Vineet D. Menachery ◽  
David A. Leib

ABSTRACT The type I interferon (IFN) cascade is critical in controlling viral replication and pathogenesis. Recognition pathways triggered by viral infection rapidly induce the type I IFN cascade, often in an IFN regulatory factor 3 (IRF-3)-dependent fashion. This dependence predicts that loss of IRF-3 would render early recognition pathways inoperative and thereby impact virus replication, but this has not been observed previously with herpes simplex virus type 1 (HSV-1) in vitro. In this study, HSV-1-infected IRF-3−/− bone marrow-derived dendritic cells (BMDCs) and macrophages supported increased HSV replication compared to control cells. In addition, IRF-3-deficient BMDCs exhibited delayed type I IFN synthesis compared to control cells. However, while IFN pretreatment of IRF-3−/− BMDCs resulted in reduced virus titers, a far greater reduction was seen after IFN treatment of wild-type cells. This suggests that even in the presence of exogenously supplied IFN, IRF-3−/− BMDCs are inherently defective in the control of HSV-1 replication. Together, these results demonstrate a critical role for IRF-3-mediated pathways in controlling HSV-1 replication in cells of the murine immune system.


2011 ◽  
Vol 85 (19) ◽  
pp. 9945-9955 ◽  
Author(s):  
S. J. Allen ◽  
K. R. Mott ◽  
A. A. Chentoufi ◽  
L. BenMohamed ◽  
S. L. Wechsler ◽  
...  

1996 ◽  
Vol 7 (3) ◽  
pp. 128-137 ◽  
Author(s):  
T.H. Bacon ◽  
B.A. Howard

The replication of herpes simplex virus type 1 (HSV-1) or HSV-2 in MRC-5 cells infected at 0.01 pfu cell−1 treated continuously for 72 h, was inhibited more efficiently by penciclovir than aciclovir ( p = 0.0001). However, multiple cycles of replication were required in order to distinguish the compounds. Virus from cultures treated for 72 h with either compound, at 3 or 10 μg ml−1 was resistant to penciclovir and aciclovir (50% effective concentrations > 10 μg ml−1), but infectivity titres of supernatants from these aciclovirtreated cultures were higher than for penciclovir. Increased production of resistant virus in aciclovirtreated cultures may be the consequence of the less potent inhibition of virus replication by aciclovir. Penciclovir caused prolonged inhibition of HSV-1 and HSV-2 replication in three human cell lines infected at 1 pfu cell−1 following treatment for 18 h, whereas virus replication resumed rapidly after withdrawal of aciclovir. Neither compound showed prolonged activity after 18 h treatment, when the multiplicity of infection was reduced to 0.01 pfu cell−1. This surprising observation prompted experiments testing the effect of repeated pulse treatment in cultures infected at low multiplicity. Penciclovir inhibited HSV-1 replication significantly more effectively than aciclovir in MRC-5 cells infected at 10−4 pfu cell−1 treated daily for 6 h ( p < 0.001, n = 5) but only a trend was observed for HSV-2 ( p = 0.06, n = 6).


1981 ◽  
Vol 40 (1) ◽  
pp. 241-247 ◽  
Author(s):  
Robert M. L. Buller ◽  
John E. Janik ◽  
Edwin D. Sebring ◽  
James A. Rose

2021 ◽  
Vol 17 (9) ◽  
pp. e1009950
Author(s):  
Nikhil Sharma ◽  
Chenyao Wang ◽  
Patricia Kessler ◽  
Ganes C. Sen

STING is a nodal point for cellular innate immune response to microbial infections, autoimmunity and cancer; it triggers the synthesis of the antiviral proteins, type I interferons. Many DNA viruses, including Herpes Simplex Virus 1 (HSV1), trigger STING signaling causing inhibition of virus replication. Here, we report that HSV1 evades this antiviral immune response by inducing a cellular microRNA, miR-24, which binds to the 3’ untranslated region of STING mRNA and inhibits its translation. Expression of the gene encoding miR-24 is induced by the transcription factor AP1 and activated by MAP kinases in HSV1-infected cells. Introduction of exogenous miR-24 or prior activation of MAPKs, causes further enhancement of HSV1 replication in STING-expressing cells. Conversely, transfection of antimiR-24 inhibits virus replication in those cells. HSV1 infection of mice causes neuropathy and death; using two routes of infection, we demonstrated that intracranial injection of antimiR-24 alleviates both morbidity and mortality of the infected mice. Our studies reveal a new immune evasion strategy adopted by HSV1 through the regulation of STING and demonstrates that it can be exploited to enhance STING’s antiviral action.


Sign in / Sign up

Export Citation Format

Share Document