Yeast Nuclear Genes for mtDNA Maintenance

2003 ◽  
pp. 139-149 ◽  
Author(s):  
Françoise Foury
Keyword(s):  
1999 ◽  
Vol 20 (3) ◽  
pp. 357-362 ◽  
Author(s):  
Susan M. Angell ◽  
David C. Baulcombe

Genetics ◽  
1980 ◽  
Vol 96 (3) ◽  
pp. 567-588 ◽  
Author(s):  
Sue Klapholz ◽  
Rochelle Easton Esposito

ABSTRACT ATCC4117 is a strain of S. cerevisiae that undergoes a single nuclear division during sporulation to produce asci containing two diploid ascospores (Grewal and Miller 1972). All clones derived from these spores are sporulation-capable and, like the parental strain, form two-spored asci. In this paper, we describe the genetic analysis of ATCC4117. In tetraploid hybrids of vegetative cells of the ATCC4117 diploid and a/a or α/α diploids, the production of two-spored asci is recessive. From these tetraploids, we have isolated two recessive alleles, designated spo12–1 and spo13–1, each of which alone results in the production of asci with two diploid or near-diploid spores. These alleles are unlinked and segregate as single nuclear genes. spo12–1 is approximately 22 cM from its centromere; spo13–1 has been localized to within 1 cM of arg4 on chromosome VIII. This analysis also revealed that ATCC4117 carries a diploidization gene allelic to or closely linked to HO, modifiers that reduce the number of haploid spores per ascus and alleles affecting the total level of sporulation.


Genetics ◽  
1984 ◽  
Vol 107 (4) ◽  
pp. 679-701
Author(s):  
Andrew G Clark

ABSTRACT A deterministic model allowing variation at a nuclear genetic locus in a population segregating two cytoplasmic types is formulated. Additive, multiplicative and symmetric viability matrices are analyzed for existence and stability of equilibria. The protectedness of polymorphisms in both nuclear genes and cytoplasmic types is also investigated in the general model. In no case is a complete polymorphism protected with this deterministic model. Results are discussed in light of the extensive variation in mtDNA that has recently been reported.


1992 ◽  
Vol 267 (4) ◽  
pp. 2467-2473
Author(s):  
P P Pelissier ◽  
N M Camougrand ◽  
S T Manon ◽  
G M Velours ◽  
M G Guerin

2021 ◽  
Author(s):  
Christoph Mayer ◽  
Lars Dietz ◽  
Elsa Call ◽  
Sandra Kukowka ◽  
Sebastian Martin ◽  
...  

Author(s):  
Giovanni Piccinini ◽  
Mariangela Iannello ◽  
Guglielmo Puccio ◽  
Federico Plazzi ◽  
Justin C Havird ◽  
...  

Abstract In Metazoa, 4 out of 5 complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mito-nuclear coevolution. Previous studies have supported co-adaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis”, a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations owing to less efficient mitochondrial selection. In this study we analysed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared to non-OXPHOS-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared to nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.


Genetics ◽  
1980 ◽  
Vol 95 (3) ◽  
pp. 561-577 ◽  
Author(s):  
Steven I Reed

ABSTRACT Thirty-three temperature-sensitive mutations defective in the start event of the cell division cycle of Saccharomyces cereuisiae were isolated and subjected to preliminary characterization. Complementation studies assigned these mutations to four complementation groups, one of which, cdc28, has been described previously. Genetic analysis revealed that these complementation groups define single nuclear genes, unlinked to one another. One of the three newly identified genes, cdc37, has been located in the yeast linkage map on chromosome IV, two meiotic map units distal to hom2.—Each mutation produces stage-specific arrest of cell division at start, the same point where mating pheromone interrupts division. After synchronization at start by incubation at the restrictive temperature, the mutants retain the capacity to enlarge and to conjugate.


Sign in / Sign up

Export Citation Format

Share Document