Chemical Proteomics Profiling of Proteasome Activity

Author(s):  
Martijn Verdoes ◽  
Celia R. Berkers ◽  
Bogdan I. Florea ◽  
Paul F. van Swieten ◽  
Herman S. Overkleeft ◽  
...  
2020 ◽  
Author(s):  
Lei Wang ◽  
Louis Riel ◽  
Bekim Bajrami ◽  
Bin Deng ◽  
Amy Howell ◽  
...  

The novel use of the α-methylene-β-lactone (MeLac) moiety as a warhead of multiple electrophilic sites is reported. In this study, we demonstrate that a MeLac-alkyne is a competent covalent probe and reacts with diverse proteins in live cells. Proteomics analysis of affinity-enriched samples identifies probe-reacted proteins, resolves their modified peptides/residues, and thus characterizes probe-protein reactions. Unique methods are developed to evaluate confidence in the identification of the reacted proteins and modified peptides. Tandem mass spectra of the peptides reveal that MeLac reacts with nucleophilic cysteine, serine, lysine, threonine, and tyrosine residues, through either Michael addition or acyl addition. A peptide-centric proteomics platform, using MeLac-alkyne as the measurement probe, successfully analyzes the Orlistat selectivity in live HT-29 cells. MeLac is a versatile warhead demonstrating enormous potential to expedite the development of covalent probes and inhibitors in interrogating protein (re)activity. MeLac-empowered platforms in chemical proteomics are widely adaptable for measuring the live-cell action of reactive molecules.


2020 ◽  
Vol 01 ◽  
Author(s):  
Ayşe Mine Yılmaz ◽  
Gökhan Biçim ◽  
Kübra Toprak ◽  
Betül Karademir Yılmaz ◽  
Irina Milisav ◽  
...  

Background: Different cellular responses influence the progress of cancer. In this study, we have investigated the effect of hydrogen peroxide and quercetin induced changes on cell viability, apoptosis and oxidative stress in human hepatocellular carcinoma (HepG2) cells. Methods: The effects of hydrogen peroxide and quercetin on cell viability, cell cycle phases and oxidative stress related cellular changes were investigated. Cell viability was assessed by WST-1 assay. Apoptosis rate, cell cycle phase changes and oxidative stress were measured by flow cytometry. Protein expressions of p21, p27, p53, NF-Kβ-p50 and proteasome activity were determined by Western blot and fluorometry, respectively. Results: Hydrogen peroxide and quercetin treatment resulted in decreased cell viability and increased apoptosis in HepG2 cells. Proteasome activity was increased by hydrogen peroxide but decreased by quercetin treatment. Conclusion: Both agents resulted in decreased p53 protein expression and increased cell death by different mechanisms regarding proteostasis and cell cycle phases.


2021 ◽  
Vol 2 (2) ◽  
pp. 100593
Author(s):  
Wankyu Lee ◽  
Zhen Huang ◽  
Christopher W. am Ende ◽  
Uthpala Seneviratne

The Analyst ◽  
2021 ◽  
Author(s):  
Madalina M. Barsan ◽  
Victor C. Diculescu

The 20S proteasome is immobilized through specific interactions with antibodies and its activity is evaluated by electrochemical methods.


2019 ◽  
Vol 25 (19) ◽  
Author(s):  
Matthew W. Halloran ◽  
Jean‐Philip Lumb
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document