Interaction Between Respiratory Syncytial Virus and Glycosaminoglycans, Including Heparan Sulfate

2007 ◽  
pp. 15-34
Author(s):  
Louay K. Hallak ◽  
Steven A. Kwilas ◽  
Mark E. Peeples
2012 ◽  
Vol 56 (10) ◽  
pp. 5278-5288 ◽  
Author(s):  
Manuela Donalisio ◽  
Marco Rusnati ◽  
Valeria Cagno ◽  
Andrea Civra ◽  
Antonella Bugatti ◽  
...  

ABSTRACTRespiratory syncytial virus (RSV) interacts with cell surface heparan sulfate proteoglycans (HSPGs) to initiate infection. The interaction of RSV with HSPGs thus presents an attractive target for the development of novel inhibitors of RSV infection. In the present study, a minilibrary of linear, dimeric, and dendrimeric peptides containing clusters of basic amino acids was screened with the aim of identifying peptides able to bind HSPGs and thus block RSV attachment and infectivity. Of the compounds identified, the dendrimer SB105-A10 was the most potent inhibitor of RSV infectivity, with 50% inhibitory concentrations (IC50s) of 0.35 μM and 0.25 μM measured in Hep-2 and A549 cells, respectively. SB105-A10 was found to bind to both cell types via HSPGs, suggesting that its antiviral activity is indeed exerted by competing with RSV for binding to cell surface HSPGs. SB105-A10 prevented RSV infection when added before the viral inoculum, in line with its proposed HSPG-binding mechanism of action; moreover, antiviral activity was also exhibited when SB105-A10 was added postinfection, as it was able to reduce the cell-to-cell spread of the virus. The antiviral potential of SB105-A10 was further assessed using human-derived tracheal/bronchial epithelial cells cultured to form a pseudostratified, highly differentiated model of the epithelial tissue of the human respiratory tract. SB105-A10 strongly reduced RSV infectivity in this model and exhibited no signs of cytotoxicity or proinflammatory effects. Together, these features render SB105-A10 an attractive candidate for further development as a RSV inhibitor to be administered by aerosol delivery.


1998 ◽  
Vol 72 (9) ◽  
pp. 7221-7227 ◽  
Author(s):  
C. Bourgeois ◽  
J. B. Bour ◽  
K. Lidholt ◽  
C. Gauthray ◽  
P. Pothier

ABSTRACT Addition of heparin to the virus culture inhibited syncytial plaque formation due to respiratory syncytial virus (RSV). Moreover, pretreatment of the virus with heparinase or an inhibitor of heparin, protamine, greatly reduced virus infectivity. Two anti-heparan sulfate antibodies stained RSV-infected cells, but not noninfected cells, by immunofluorescence. One of the antibodies was capable of neutralizing RSV infection in vitro. These results prove that heparin-like structures identified on RSV play a major role in early stages of infection. The RSV G protein is the attachment protein. Both anti-heparan sulfate antibodies specifically bound to this protein. Enzymatic digestion of polysaccharides in the G protein reduced the binding, which indicates that heparin-like structures are on the G protein. Such oligosaccharides may therefore participate in the attachment of the virus.


2000 ◽  
Vol 74 (14) ◽  
pp. 6442-6447 ◽  
Author(s):  
Steven A. Feldman ◽  
Susette Audet ◽  
Judy A. Beeler

ABSTRACT Human respiratory syncytial virus (RSV) F glycoprotein (RSV-F) can independently interact with immobilized heparin and facilitate both attachment to and infection of cells via an interaction with cellular heparan sulfate. RSV-glycosaminoglycan (GAG) interactions were evaluated using heparin-agarose affinity chromatography. RSV-F from A2- and B1/cp-52 (cp-52)-infected cell lysates, RSV-F derived from a recombinant vaccinia virus, and affinity-purified F protein all bound to and were specifically eluted from heparin columns. In infectivity inhibition studies, soluble GAGs decreased the infectivity of RSV A2 and cp-52, with bovine lung heparin exhibiting the highest specific activity against both A2 (50% effective dose [ED50] = 0.28 ± 0.11 μg/ml) andcp-52 (ED50 = 0.55 ± 0.14 μg/ml). Furthermore, enzymatic digestion of cell surface GAGs by heparin lyase I and heparin lyase III but not chondroitinase ABC resulted in a significant reduction in cp-52 infectivity. Moreover, bovine lung heparin inhibited radiolabeled A2 and cp-52 virus binding up to 90%. Taken together, these data suggest that RSV-F independently interacts with heparin/heparan sulfate and this type of interaction facilitates virus attachment and infectivity.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7398
Author(s):  
Abu Hamza ◽  
Abdus Samad ◽  
Md. Ali Imam ◽  
Md. Imam Faizan ◽  
Anwar Ahmed ◽  
...  

The global burden of disease caused by a respiratory syncytial virus (RSV) is becoming more widely recognized in young children and adults. Heparan sulfate helps in attaching the virion through G protein with the host cell membrane. In this study, we examined the structural changes of ectodomain G protein (edG) in a wide pH range. The absorbance results revealed that protein maintains its tertiary structure at physiological and highly acidic and alkaline pH. However, visible aggregation of protein was observed in mild acidic pH. The intrinsic fluorescence study shows no significant change in the λmax except at pH 12.0. The ANS fluorescence of edG at pH 2.0 and 3.0 forms an acid-induced molten globule-like state. The denaturation transition curve monitored by fluorescence spectroscopy revealed that urea and GdmCl induced denaturation native (N) ↔ denatured (D) state follows a two-state process. The fluorescence quenching, molecular docking, and 50 ns simulation measurements suggested that heparan sulfate showed excellent binding affinity to edG. Our binding study provides a preliminary insight into the interaction of edG to the host cell membrane via heparan sulfate. This binding can be inhibited using experimental approaches at the molecular level leading to the prevention of effective host–pathogen interaction.


2014 ◽  
Vol 58 (8) ◽  
pp. 4782-4794 ◽  
Author(s):  
Valeria Cagno ◽  
Manuela Donalisio ◽  
Andrea Civra ◽  
Marco Volante ◽  
Elena Veccelli ◽  
...  

ABSTRACTRespiratory syncytial virus (RSV) exploits cell surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The interaction between RSV and HSPGs thus presents an attractive target for the development of novel inhibitors of RSV infection. In this study, selective chemical modification of theEscherichia coliK5 capsular polysaccharide was used to generate a collection of sulfated K5 derivatives with a backbone structure that mimics the heparin/heparan sulfate biosynthetic precursor. The screening of a series of N-sulfated (K5-NS), O-sulfated (K5-OS), and N,O-sulfated (K5-N,OS) derivatives with different degrees of sulfation revealed the highly sulfated K5 derivatives K5-N,OS(H) and K5-OS(H) to be inhibitors of RSV. Their 50% inhibitory concentrations were between 1.07 nM and 3.81 nM in two different cell lines, and no evidence of cytotoxicity was observed. Inhibition of RSV infection was maintained in binding and attachment assays but not in preattachment assays. Moreover, antiviral activity was also evident when the K5 derivatives were added postinfection, both in cell-to-cell spread and viral yield reduction assays. Finally, both K5-N,OS(H) and K5-OS(H) prevented RSV infection in human-derived tracheal/bronchial epithelial cells cultured to form a pseudostratified, highly differentiated model of the epithelial tissue of the human respiratory tract. Together, these features put K5-N,OS(H) and K5-OS(H) forward as attractive candidates for further development as RSV inhibitors.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
PF Uzor ◽  
DC Odimegwu ◽  
W Ebrahim ◽  
PO Osadebe ◽  
NJ Nwodo ◽  
...  

2020 ◽  
Author(s):  
Richard Thwaites ◽  
Jonathan Coutts ◽  
John Fullarton ◽  
ElizaBeth Grubb ◽  
Carole Morris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document