scholarly journals Functional analysis and localization studies of Phr1 and Gas1 proteins from the fungal pathogen Candida albicans and the budding yeast Saccharamyces cerevisiae

2009 ◽  
Author(s):  
Julia Calderón Blanco
2005 ◽  
Vol 16 (6) ◽  
pp. 2913-2925 ◽  
Author(s):  
Susana García-Sánchez ◽  
Abigail L. Mavor ◽  
Claire L. Russell ◽  
Silvia Argimon ◽  
Paul Dennison ◽  
...  

In budding yeast, Tup1 and Ssn6/Cyc8 form a corepressor that regulates a large number of genes. This Tup1-Ssn6 corepressor appears to be conserved from yeast to man. In the pathogenic fungus Candida albicans, Tup1 regulates cellular morphogenesis, phenotypic switching, and metabolism, but the role of Ssn6 remains unclear. We show that there are clear differences in the morphological and invasive phenotypes of C. albicans ssn6 and tup1 mutants. Unlike Tup1, Ssn6 depletion promoted morphological events reminiscent of phenotypic switching rather than filamentous growth. Transcript profiling revealed minimal overlap between the Ssn6 and Tup1 regulons. Hypha-specific genes, which are repressed by Tup1 and Nrg1, were not derepressed in ssn6 cells under the conditions studied. In contrast, the phase specific gene WH11 was derepressed in ssn6 cells, but not in tup1 or nrg1 cells. Hence Ssn6 and Tup1 play distinct roles in C. albicans. Nevertheless, both Ssn6 and Tup1 were required for the Nrg1-mediated repression of an artificial NRE promoter, and lexA-Nrg1 mediated repression in the C. albicans one-hybrid system. These observations are explained in models that are generally consistent with the Tup1-Ssn6 paradigm in budding yeast.


Microbiology ◽  
2010 ◽  
Vol 156 (10) ◽  
pp. 2912-2919 ◽  
Author(s):  
Yong Liang ◽  
Dongsheng Wei ◽  
Hui Wang ◽  
Ning Xu ◽  
Biao Zhang ◽  
...  

The ability of Candida albicans to act as an opportunistic fungal pathogen is linked to its ability to switch among different morphological forms. This conversion is an important feature of C. albicans and is correlated with its pathogenesis. Many conserved positive and negative transcription factors regulate morphogenetic transition of C. albicans. Here, we show the results of functional analysis of CaAFT2, which is an orthologue of the Saccharomyces cerevisiae AFT2 gene. We have cloned CaAFT2 which has an ability to complement the S. cerevisiae aft1Δ mutant strain growth defect. Interestingly, although disruption of the AFT2 gene did not affect cell growth in solid and liquid iron-limited conditions, the cell surface ferric reductase activity was significantly decreased. Importantly, deletion of AFT2 in C. albicans led to growth of a smooth colony with no peripheral hyphae. Moreover, virulence of an aft2Δ/aft2Δ mutant was markedly attenuated in a mouse model. Our results suggest that CaAft2p represents a novel activator and that it functions in ferric reductase activity, morphogenesis and virulence in C. albicans.


2017 ◽  
Vol 8 ◽  
Author(s):  
Julien Chaillot ◽  
Faiza Tebbji ◽  
Carlos García ◽  
Hugo Wurtele ◽  
René Pelletier ◽  
...  

mSphere ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Namkha Nguyen ◽  
Morgan M. F. Quail ◽  
Aaron D. Hernday

ABSTRACT Candida albicans is the most common fungal pathogen of humans. Historically, molecular genetic analysis of this important pathogen has been hampered by the lack of stable plasmids or meiotic cell division, limited selectable markers, and inefficient methods for generating gene knockouts. The recent development of clustered regularly interspaced short palindromic repeat(s) (CRISPR)-based tools for use with C. albicans has opened the door to more efficient genome editing; however, previously reported systems have specific limitations. We report the development of an optimized CRISPR-based genome editing system for use with C. albicans. Our system is highly efficient, does not require molecular cloning, does not leave permanent markers in the genome, and supports rapid, precise genome editing in C. albicans. We also demonstrate the utility of our system for generating two independent homozygous gene knockouts in a single transformation and present a method for generating homozygous wild-type gene addbacks at the native locus. Furthermore, each step of our protocol is compatible with high-throughput strain engineering approaches, thus opening the door to the generation of a complete C. albicans gene knockout library. IMPORTANCE Candida albicans is the major fungal pathogen of humans and is the subject of intense biomedical and discovery research. Until recently, the pace of research in this field has been hampered by the lack of efficient methods for genome editing. We report the development of a highly efficient and flexible genome editing system for use with C. albicans. This system improves upon previously published C. albicans CRISPR systems and enables rapid, precise genome editing without the use of permanent markers. This new tool kit promises to expedite the pace of research on this important fungal pathogen.


2006 ◽  
Vol 5 (2) ◽  
pp. 347-358 ◽  
Author(s):  
B. Eisman ◽  
R. Alonso-Monge ◽  
E. Román ◽  
D. Arana ◽  
C. Nombela ◽  
...  

ABSTRACT The Hog1 mitogen-activated protein (MAP) kinase mediates an adaptive response to both osmotic and oxidative stress in the fungal pathogen Candida albicans. This protein also participates in two distinct morphogenetic processes, namely the yeast-to-hypha transition (as a repressor) and chlamydospore formation (as an inducer). We show here that repression of filamentous growth occurs both under serum limitation and under other partially inducing conditions, such as low temperature, low pH, or nitrogen starvation. To understand the relationship of the HOG pathway to other MAP kinase cascades that also play a role in morphological transitions, we have constructed and characterized a set of double mutants in which we deleted both the HOG1 gene and other signaling elements (the CST20, CLA4, and HST7 kinases, the CPH1 and EFG1 transcription factors, and the CPP1 protein phosphatase). We also show that Hog1 prevents the yeast-to-hypha switch independent of all the elements analyzed and that the inability of the hog1 mutants to form chlamydospores is suppressed when additional elements of the CEK1 pathway (CST20 or HST7) are altered. Finally, we report that Hog1 represses the activation of the Cek1 MAP kinase under basal conditions and that Cek1 activation correlates with resistance to certain cell wall inhibitors (such as Congo red), demonstrating a role for this pathway in cell wall biogenesis.


2004 ◽  
Vol 3 (5) ◽  
pp. 1164-1168 ◽  
Author(s):  
Yvonne Weber ◽  
Stephan K.-H. Prill ◽  
Joachim F. Ernst

ABSTRACT Sec20p is an essential endoplasmic reticulum (ER) membrane protein in yeasts, functioning as a tSNARE component in retrograde vesicle traffic. We show that Sec20p in the human fungal pathogen Candida albicans is extensively O mannosylated by protein mannosyltransferases (Pmt proteins). Surprisingly, Sec20p occurs at wild-type levels in a pmt6 mutant but at very low levels in pmt1 and pmt4 mutants and also after replacement of specific Ser/Thr residues in the lumenal domain of Sec20p. Pulse-chase experiments revealed rapid degradation of unmodified Sec20p (38.6 kDa) following its biosynthesis, while the stable O-glycosylated form (50 kDa) was not formed in a pmt1 mutant. These results suggest a novel function of O mannosylation in eukaryotes, in that modification by specific Pmt proteins will prevent degradation of ER-resident membrane proteins via ER-associated degradation or a proteasome-independent pathway.


Genome ◽  
2006 ◽  
Vol 49 (4) ◽  
pp. 346-353 ◽  
Author(s):  
Ellen C Jensen ◽  
Jacob M Hornby ◽  
Nicole E Pagliaccetti ◽  
Chuleeon M Wolter ◽  
Kenneth W Nickerson ◽  
...  

Candida albicans is a diploid fungus that undergoes a morphological transition between budding yeast, hyphal, and pseudohyphal forms. The morphological transition is strongly correlated with virulence and is regulated in part by quorum sensing. Candida albicans produces and secretes farnesol that regulates the yeast to mycelia morphological transition. Mutants that fail to synthesize or respond to farnesol could be locked in the filamentous mode. To test this hypothesis, a collection of C. albicans mutants were isolated that have altered colony morphologies indicative of the presence of hyphal cells under environmental conditions where C. albicans normally grows only as yeasts. All mutants were characterized for their ability to respond to farnesol. Of these, 95.9% fully or partially reverted to wild-type morphology on yeast malt (YM) agar plates supplemented with farnesol. All mutants that respond to farnesol regained their hyphal morphology when restreaked on YM plates without farnesol. The observation that farnesol remedial mutants are so common (95.9%) relative to mutants that fail to respond to farnesol (4.1%) suggests that farnesol activates and (or) induces a pathway that can override many of the morphogenesis defects in these mutants. Additionally, 9 mutants chosen at random were screened for farnesol production. Two mutants failed to produce detectable levels of farnesol.Key words: farnesol-remedial mutants, farnesol-sensing mutants, farnesol-synthesis mutants, quorum sensing, Candida albicans, morphological transition.


Sign in / Sign up

Export Citation Format

Share Document