An improved transformation protocol for the human fungal pathogen Candida albicans

2003 ◽  
Vol 42 (6) ◽  
pp. 339-343 ◽  
Author(s):  
Andrea Walther ◽  
Jürgen Wendland
2017 ◽  
Vol 8 ◽  
Author(s):  
Julien Chaillot ◽  
Faiza Tebbji ◽  
Carlos García ◽  
Hugo Wurtele ◽  
René Pelletier ◽  
...  

2004 ◽  
Vol 3 (5) ◽  
pp. 1164-1168 ◽  
Author(s):  
Yvonne Weber ◽  
Stephan K.-H. Prill ◽  
Joachim F. Ernst

ABSTRACT Sec20p is an essential endoplasmic reticulum (ER) membrane protein in yeasts, functioning as a tSNARE component in retrograde vesicle traffic. We show that Sec20p in the human fungal pathogen Candida albicans is extensively O mannosylated by protein mannosyltransferases (Pmt proteins). Surprisingly, Sec20p occurs at wild-type levels in a pmt6 mutant but at very low levels in pmt1 and pmt4 mutants and also after replacement of specific Ser/Thr residues in the lumenal domain of Sec20p. Pulse-chase experiments revealed rapid degradation of unmodified Sec20p (38.6 kDa) following its biosynthesis, while the stable O-glycosylated form (50 kDa) was not formed in a pmt1 mutant. These results suggest a novel function of O mannosylation in eukaryotes, in that modification by specific Pmt proteins will prevent degradation of ER-resident membrane proteins via ER-associated degradation or a proteasome-independent pathway.


2018 ◽  
Author(s):  
Prashant R. Desai ◽  
Klaus Lengeler ◽  
Mario Kapitan ◽  
Silas Matthias Janßen ◽  
Paula Alepuz ◽  
...  

ABSTRACTExtensive 5’ untranslated regions (UTR) are a hallmark of transcripts determining hyphal morphogenesis inCandida albicans.The major transcripts of theEFG1gene, which are responsible for cellular morphogenesis and metabolism, contain a 5’ UTR of up to 1170 nt. Deletion analyses of the 5’ UTR revealed a 218 nt sequence that is required for production of the Efg1 protein and its functions in filamentation, without lowering the level and integrity of theEFG1transcript. Polysomal analyses revealed that the 218 nt 5’ UTR sequence is required for efficient translation of the Efg1 protein. Replacement of theEFG1ORF by the heterologous reporter geneCaCBGlucconfirmed the positive regulatory importance of the identified 5’ UTR sequence. In contrast to other reported transcripts containing extensive 5’ UTR sequences, these results indicate the positive translational function of the 5’ UTR sequence in theEFG1transcript, which is observed in context of the nativeEFG1promoter. The results suggest that the 5’ UTR recruits regulatory factors, possibly during emergence of the native transcript, which aid in translation of theEFG1transcript.IMPORTANCEMany of the virulence traits that makeCandida albicansan important human fungal pathogen are regulated on a transcriptional level. Here we report an important regulatory contribution of translation, which is exerted by the extensive 5’ untranslated regulatory sequence (5’ UTR) of the transcript for the protein Efg1, which determines growth, metabolism and filamentation in the fungus. Presence of the 5’ UTR is required for efficient translation of Efg1, to promote filamentation. Because transcripts for many relevant regulators contain extensive 5’ UTR sequences, it appears that virulence ofC. albicansdepends on the combination of transcriptional and translation regulatory mechanisms.


2014 ◽  
Vol 67 (4) ◽  
pp. 349-350 ◽  
Author(s):  
Paul Wai-Kei Tsang ◽  
Alan Pak-Kin Wong ◽  
Han-Sung Jung ◽  
Wing-Ping Fong

Yeast ◽  
2020 ◽  
Author(s):  
Praveen Kumar Reddy ◽  
Dileep Pullepu ◽  
Darshan Dhabalia ◽  
Sagunthala Murugesan Udaya Prakash ◽  
Mohammad Anaul Kabir

Antibiotics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Olena P. Ishchuk ◽  
Olov Sterner ◽  
Ulf Ellervik ◽  
Sophie Manner

The opportunistic human fungal pathogen Candida albicans relies on cell morphological transitions to develop biofilm and invade the host. In the current study, we developed new regulatory molecules, which inhibit the morphological transition of C. albicans from yeast-form cells to cells forming hyphae. These compounds, benzyl α-l-fucopyranoside and benzyl β-d-xylopyranoside, inhibit the hyphae formation and adhesion of C. albicans to a polystyrene surface, resulting in a reduced biofilm formation. The addition of cAMP to cells treated with α-l-fucopyranoside restored the yeast-hyphae switch and the biofilm level to that of the untreated control. In the β-d-xylopyranoside treated cells, the biofilm level was only partially restored by the addition of cAMP, and these cells remained mainly as yeast-form cells.


2006 ◽  
Vol 5 (11) ◽  
pp. 1894-1905 ◽  
Author(s):  
Aki Kaneko ◽  
Takashi Umeyama ◽  
Yuki Utena-Abe ◽  
Satoshi Yamagoe ◽  
Masakazu Niimi ◽  
...  

ABSTRACT The transcriptional factor CaTup1p represses many genes involved in intracellular processes, including the yeast-hypha transition, in the human fungal pathogen Candida albicans. Using tandem affinity purification technology, we identified a novel protein that interacts with CaTup1p, named Tcc1p (Tup1p complex component). Tcc1p is a C. albicans-specific protein with a 736-amino-acid polypeptide with four tetratricopeptide repeat (TPR) motifs in the N-terminal portion. Tcc1p formed a protein complex with CaTup1p via the TPR domain of Tcc1p, independently of CaSsn6p-CaTup1p The tcc1Δ disruptant showed filamentous growth under conditions inducing the yeast form, as is true of the Catup1Δ mutant. Consistent with this result, the common set of hypha-specific genes was negatively regulated by both TCC1 and CaTUP1. These observations will provide new insights into CaTup1p-dependent transcriptional gene regulation in C. albicans.


2014 ◽  
Vol 83 (2) ◽  
pp. 637-645 ◽  
Author(s):  
Shamoon Naseem ◽  
David Frank ◽  
James B. Konopka ◽  
Nick Carpino

The human fungal pathogenCandida albicanscauses invasive candidiasis, characterized by fatal organ failure due to disseminated fungal growth and inflammatory damage. Thesuppressor ofTCRsignaling 1 (Sts-1) and Sts-2 are two homologous phosphatases that negatively regulate signaling pathways in a number of hematopoietic cell lineages, including T lymphocytes, mast cells, and platelets. Functional inactivation of both Sts enzymes leads to profound resistance to systemic infection byC. albicans, such that greater than 80% of mice lacking Sts-1 and -2 survive a dose ofC. albicans(2.5 × 105CFU/mouse) that is uniformly lethal to wild-type mice within 10 days. Restriction of fungal growth within the kidney occurs by 24 h postinfection in the mutant mice. This occurs without induction of a hyperinflammatory response, as evidenced by the decreased presence of leukocytes and inflammatory cytokines that normally accompany the antifungal immune response. Instead, the absence of the Sts phosphatases leads to the rapid induction of a unique immunological environment within the kidney, as indicated by the early induction of a proinflammatory cytokine (CXL10). Mice lacking either Sts enzyme individually display an intermediate lethality phenotype. These observations identify an opportunity to optimize host immune responses toward a deadly fungal pathogen.


Sign in / Sign up

Export Citation Format

Share Document