scholarly journals Effects of forest management and climate change on energy biomass and timber production with implications for carbon stocks and net CO2 exchange in boreal forest ecosystems

2011 ◽  
Vol 2011 (117) ◽  
Author(s):  
Ashraful Alam
2012 ◽  
Vol 163 (12) ◽  
pp. 481-492
Author(s):  
Andreas Rigling ◽  
Ché Elkin ◽  
Matthias Dobbertin ◽  
Britta Eilmann ◽  
Arnaud Giuggiola ◽  
...  

Forest and climate change in the inner-Alpine dry region of Visp Over the past decades, observed increases in temperature have been particularly pronounced in mountain regions. If this trend should continue in the 21st Century, frequency and intensity of droughts will increase, and will pose major challenges for forest management. Under current conditions drought-related tree mortality is already an important factor of forest ecosystems in dry inner-Alpine valleys. Here we assess the sensitivity of forest ecosystems to climate change and evaluate alternative forest management strategies in the Visp region. We integrate data from forest monitoring plots, field experiments and dynamic forests models to evaluate how the forest ecosystem services timber production, protection against natural hazards, carbon storage and biodiver-sity will be impacted. Our results suggest that at dry low elevation sites the drought tolerance of native tree species will be exceeded so that in the longer term a transition to more drought-adapted species should be considered. At medium elevations, drought and insect disturbances as by bark beetles are projected to be important for forest development, while at high elevations forests are projected to expand and grow better. All of the ecosystem services that we considered are projected to be impacted by changing forest conditions, with the specific impacts often being elevation-dependent. In the medium term, forest management that aims to increase the resilience of forests to drought can help maintain forest ecosystem services temporarily. However, our results suggest that relatively rigid management interventions are required to achieve significant effects. By using a combination of environmental monitoring, field experiments and modeling, we are able to gain insight into how forest ecosystem, and the services they provide, will respond to future changes.


2021 ◽  
Author(s):  
David Bysouth ◽  
Merritt Turetsky ◽  
Andrew Spring

<p>Climate change is causing rapid warming at northern high latitudes and disproportionately affecting ecosystem services that northern communities rely upon. In Canada’s Northwest Territories (NWT), climate change is impacting the access and availability of traditional foods that are critical for community health and well-being. With climate change potentially expanding the envelope of suitable agricultural land northward, many communities in the NWT are evaluating including agriculture in their food systems. However, the conversion of boreal forest to agriculture may degrade the carbon rich soils that characterize the region, resulting in large carbon losses to the atmosphere and the depletion of existing ecosystem services associated with the accumulation of soil organic matter. Here, we first summarize the results of 35 publications that address land use change from boreal forest to agriculture, with the goal of understanding the magnitude and drivers of carbon stock changes with time-since-land use change. Results from the literature synthesis show that conversion of boreal forest to agriculture can result in up to ~57% of existing soil carbon stocks being lost 30 years after land use change occurs. In addition, a three-way interaction with soil carbon, pH and time-since-land use change is observed where soils become more basic with increasing time-since-land use change, coinciding with declines in soil carbon stocks. This relationship is important when looking at the types of crops communities are interested in growing and the type of agriculture associated with cultivating these crops. Partnered communities have identified crops such as berry bushes, root vegetables, potatoes and corn as crops they are interested in growing. As berry bushes grow in acidic conditions and the other mentioned crops grow in more neutral conditions, site selection and management practices associated with growing these crops in appropriate pH environments will be important for managing soil carbon in new agricultural systems in the NWT. Secondly, we also present community scale soil data assessing variation in soil carbon stocks in relation to potential soil fertility metrics targeted to community identified crops of interest for two communities in the NWT.  We collected 192 soil cores from two communities to determine carbon stocks along gradients of potential agriculture suitability. Our field soil carbon measurements in collaboration with the partnered NWT communities show that land use conversions associated with agricultural development could translate to carbon losses ranging from 2.7-11.4 kg C/m<sup>2</sup> depending on the type of soil, agricultural suitability class, and type of land use change associated with cultivation. These results highlight the importance of managing soil carbon in northern agricultural systems and can be used to emphasize the need for new community scale data relating to agricultural land use change in boreal soils. Through the collection of this data, we hope to provide northern communities with a more robust, community scale product that will allow them to make informed land use decisions relating to the cultivation of crops and the minimization of soil carbon losses while maintaining the culturally important traditional food system.</p>


2016 ◽  
Vol 46 (2) ◽  
pp. 274-283 ◽  
Author(s):  
A. Zubizarreta-Gerendiain ◽  
J. Garcia-Gonzalo ◽  
H. Strandman ◽  
K. Jylhä ◽  
H. Peltola

We studied regional effects of alternative climate change and management scenarios on timber production, its economic profitability (net present value (NPV), with 2% interest rate), and carbon stocks over a 90 year simulation period in Norway spruce (Picea abies (L.) Karst.) forests located in southern, central, and northern Finland. We also compared the results of optimised management plans (maximizing incomes) and fixed management scenarios. Business as usual (BAU) management recommendations were used as the basis for alternative management scenarios. The forest ecosystem model SIMA together with a forest optimisation tool was employed. To consider the uncertainties related to climate change, we applied two climate change scenarios (SRES B1 and SRES A2) in addition to the current climate. Results showed that timber production, NPV, and carbon stocks of forests would reduce in southern Finland, opposite to northern Finland, especially under the strong climate change scenario (SRES A2) compared with the current climate. In central Finland, climate change would have little effect. The use of optimised management plans also resulted in higher timber yield, NPV, and carbon stock of forests compared with the use of a single management scenario, regardless of forest region and climate scenario applied. In the future, we may need to modify the current BAU management recommendations to properly adapt to the changing climatic conditions.


2015 ◽  
Vol 45 (5) ◽  
pp. 515-528 ◽  
Author(s):  
Robert Jobidon ◽  
Yves Bergeron ◽  
André Robitaille ◽  
Frédéric Raulier ◽  
Sylvie Gauthier ◽  
...  

The boreal forest ecosystem is one of the largest frontier forests of the world, providing many ecological services to society. Boreal forests are also economically important, but forest harvesting and management become increasingly difficult when one moves from south to north in boreal environments. An approach was thus developed to assess the suitability of land units for timber production in a sustainable forest management (SFM) context in the northern boreal forest of Quebec (Canada). This area includes all of Quebec’s spruce – feather moss bioclimatic domain (closed forest), as well as the southern portion of the spruce–lichen bioclimatic domain (open woodland). Four criteria specific to the biophysical aspects of SFM were evaluated in 1114 land districts: physical environment, timber production capacity, forest vulnerability to fire (e.g., probability that it reaches maturity), and conservation of biodiversity. Indicators and acceptability cutoff values were determined for each selected criterion, and a sequential analysis was developed to evaluate if a land district has the potential to be sustainably managed. This analytical process led to the classification of land districts into three categories: slightly sensitive (SFM possible); moderately sensitive (SFM possible under certain conditions); and highly sensitive (SFM not possible). The results show that 354 land districts were highly sensitive, 62 due to physical constraints (7.5% of the area), 130 due to insufficient potential productivity (15.4% of the area), 92 due to insufficient potential productivity to account for the fire risk (13.8% of the area), and 70 due to an insufficient proportion of tall and dense forest habitats (7.7% of the area — biodiversity criterion). This work provides scientific background to proposing a northern limit for forest management activities in Quebec. The developed approach could be useful in other jurisdictions to address similar issues.


Sign in / Sign up

Export Citation Format

Share Document