scholarly journals Modelling of hydrodynamic cavitation for treatment of wastewater in a Venturi tube

2020 ◽  
Vol 14 (1) ◽  
pp. 61-66
Author(s):  
Betti Bolló

Treatment of municipal effluents has long been a challenge for modern technologies combining high effectiveness of degradation of pollutants with low costs of the process. Hydrodynamic cavitation is a promising application in wastewater treatment due to its simple reactor design. In this work, for a system available in the laboratory a hydrodynamic reactor is designed based on literature recommendations. On the designed Venturi tube, two-dimensional numerical simulations were investigated by the means of CFD computations using the commercial software package, Ansys Fluent. The resulting cavitation bubbles were analysed at different inlet pressures.

2020 ◽  
Vol 92 (2) ◽  
pp. 20502
Author(s):  
Behrokh Beiranvand ◽  
Alexander S. Sobolev ◽  
Anton V. Kudryashov

We present a new concept of the thermoelectric structure that generates microwave and terahertz signals when illuminated by femtosecond optical pulses. The structure consists of a series array of capacitively coupled thermocouples. The array acts as a hybrid type microwave transmission line with anomalous dispersion and phase velocity higher than the velocity of light. This allows for adding up the responces from all the thermocouples in phase. The array is easily integrable with microstrip transmission lines. Dispersion curves obtained from both the lumped network scheme and numerical simulations are presented. The connection of the thermocouples is a composite right/left-handed transmission line, which can receive terahertz radiation from the transmission line ports. The radiation of the photon to the surface of the thermocouple structure causes a voltage difference with the bandwidth of terahertz. We examined a lossy composite right/left-handed transmission line to extract the circuit elements. The calculated properties of the design are extracted by employing commercial software package CST STUDIO SUITE.


Author(s):  
D. A. Romanyuk ◽  
S. V. Panfilov ◽  
D. S. Gromov

Within the scope of the research work, we have developed the methods and software package for solving the conjugate heat and hydraulic problems based on the classical approach to performing hydraulic calculations and modeling thermal processes by means of the finite volume method in the ANSYS Fluent software package. The developed means allowed us to efficiently calculate the thermal state of complex technical objects. The study gives mathematical formulation of the methods and suggests the results of their approbation and verification


2010 ◽  
Vol 127 (3) ◽  
pp. 1828-1828
Author(s):  
Robert J. McGough ◽  
Donald J. Vanderlaan ◽  
Alexander Dutch ◽  
Matthew W. Urban

2020 ◽  
Vol 311 ◽  
pp. 123540 ◽  
Author(s):  
Thiago Averaldo Bimestre ◽  
José Antonio Mantovani Júnior ◽  
César Augusto Botura ◽  
ElianaVieira Canettieri ◽  
Celso Eduardo Tuna

2020 ◽  
Vol 21 (5) ◽  
pp. 504
Author(s):  
Qiang Li ◽  
Wei Li ◽  
Jian Zhang ◽  
Dezhi Ming ◽  
Weiwei Xu ◽  
...  

Hydraulic cavitation, as an important and complex hydrodynamic phenomenon, has long drawn attention. In this paper, the ZGB (Zwart-Gerber-Belamri) cavitation model is improved and the effect of NCG (noncondensable gas) on cavitation in water is studied by numerical simulation. The influence of NCG on the cavity length, the temperature of the cavities and the mixed viscosity of the cavities is investigated through the improved ZGB cavitation model. In addition, experiments on hydrodynamic cavitation produced by a Venturi tube are used to validate the improved ZGB cavitation model. The results show that NCG not only shortens the length of the cavity but also reduces the volume fraction of the vapor. The existence of NCG decreases the viscosity in the cavity of the Venturi tube but increases the viscosity at the sidewall of the tube. In addition, the temperature in the cavities increases with increasing NCG. Regardless of whether air is injected, the volume fraction of the vapor in the cavities increases first and then decreases with increasing temperature. However, the transition temperature decreases somewhat after injecting air. Therefore, the influence of NCG on hydraulic cavitation is significant, and the role of NCG should be considered in industry.


2020 ◽  
Vol 51 (7-9) ◽  
pp. 127-138
Author(s):  
Smaranika Nayak ◽  
Jatin Sadarang ◽  
Isham Panigrahi ◽  
Ramesh Kumar Nayak ◽  
Manisha Maurya

In automobiles suspension system, laminated springs are widely used for the absorption of shock and vibration. These laminated springs account for approximately 10%–20% of the unsprung weight of the vehicle. It has been found that composite material is used to reduce the weight of the vehicle in order to obtain better efficiency. Therefore, in the current research work, composite material is used for the fabrication of laminated spring. Among the various types of glass fiber available, the C-glass fiber has been widely used due to its better corrosion resistant property. Commercial software package ANSYS is used to optimize the composite-laminated spring. The optimized leaf spring is then fabricated by the hand layup method. It was found that the spring with composite graduated leaf resulted in 40% reduction in weight than the spring with steel graduated leaf. Similarly, the stress concentration and deformation values are reduced by 76.39% and 50% in comparison with those of steel graduated leaf. The composite-laminated spring showed better damping property and also resulted in less transmission of force to the chassis of the vehicle. The noise induced by the composite-laminated spring is also reduced in comparison with steel graduated leaf. Finally, a composite-laminated spring is found to be lighter in weight and with better noise, vibration, and harshness in comparison with steel graduated leaf. Thus, it is found to be best suited for an electric vehicle.


Sign in / Sign up

Export Citation Format

Share Document