scholarly journals Intelligent wheeled mobile robot navigation

2010 ◽  
Vol 5 (1-2) ◽  
pp. 258-264
Author(s):  
Gyula Mester

The paper deals with the wireless sensor-based remote control of mobile robots motion in an unknown environment with obstacles using the Sun SPOT technology and gives the fuzzy velocity control of a mobile robot motion in an unknown environment with obstacles. When the vehicle is moving towards the target and the sensors detect an obstacle, an avoiding strategy and velocity control are necessary. We proposed the wireless sensor-based remote control of mobile robots motion in an unknown environment with obstacles using the Sun SPOT technology and a fuzzy reactive navigation strategy of collision-free motion and velocity control in an unknown environment with obstacles. The simulation results show the effectiveness and the validity of the obstacle avoidance behavior in an unknown environment. The proposed method have been implemented on the miniature mobile robot Khepera® that is equipped with sensors.

2009 ◽  
Vol 06 (03) ◽  
pp. 181-191
Author(s):  
LEONIMER FLAVIO DE MELO ◽  
JOSE FERNANDO MANGILI

This paper presents the virtual environment implementation for simulation and design conception of supervision and control systems for mobile robots, that are capable to operate and adapt in different environments and conditions. The purpose of this virtual system is to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic conditions, dynamic and control, with monitoring in real time of all important system points. For this, an open control architecture is proposed, integrating the two main techniques of robotic control implementation in the hardware level: systems microprocessors and reconfigurable hardware devices. The implemented simulator system is composed of a trajectory generating module, a kinematic and dynamic simulator module, and an analysis module of results and errors. All the kinematic and dynamic results obtained during the simulation can be evaluated and visualized in graphs and table formats in the results analysis module, allowing the improvement of the system, minimizing the errors with the necessary adjustments and optimization. For controller implementation in the embedded system, it uses the rapid prototyping which is the technology that allows in set, with the virtual simulation environment, the development of a controller project for mobile robots. The validation and tests had been accomplished with nonholonomic mobile robot models with differential transmission.


2010 ◽  
Vol 166-167 ◽  
pp. 309-314 ◽  
Author(s):  
Iuliu Negrean ◽  
Claudiu Schonstein ◽  
Kalman Kacso ◽  
Calin Negrean ◽  
Adina Duca

In this paper the dynamics equations for a mobile robot, named PatrolBot, will be developed, using new concepts in advanced mechanics, based on important scientific researches of the main author, concerning the kinetic energy. In keeping the fact that the mathematical models of the mobile platforms are different besides the other robots types, due to nonholonomic constraints, these dynamic control functions, will be computed, according to these restrictions for robot motion.


2010 ◽  
Vol 5 (1-2) ◽  
pp. 254-257
Author(s):  
István Matijevics

This paper describes the implementation and configuration of the remote control and wireless sensor network using the Sun SPOT platform. As it is well known, greenhouses have a very extensive surface where the climate conditions can vary at the different points. In the last years, remote control and WSNs are becoming an important solution to this problem. Additional advantages of remote control are the possibility of control and monitoring these applications from remote places and having a system that can provide large amounts of data about those applications for longer periods of time. This large amount of data availability usually allows for new discoveries and further improvements.


Sign in / Sign up

Export Citation Format

Share Document