scholarly journals Plant RBR proteins are phosphorylated in cell cycle-phase dependent manner and the B” regulatory subunit containing OsPP2A holoenzyme mediates the dephosphorylation of OsRBR1

2015 ◽  
Author(s):  
Ping Yu
2003 ◽  
Vol 23 (2) ◽  
pp. 708-720 ◽  
Author(s):  
Jong Heon Kim ◽  
Ki Young Paek ◽  
Kobong Choi ◽  
Tae-Don Kim ◽  
Bumsuk Hahm ◽  
...  

ABSTRACT The c-myc proto-oncogene plays a key role in the proliferation, differentiation, apoptosis, and regulation of the cell cycle. Recently, it was demonstrated that the 5′ nontranslated region (5′ NTR) of human c-myc mRNA contains an internal ribosomal entry site (IRES). In this study, we investigated cellular proteins interacting with the IRES element of c-myc mRNA. Heterogeneous nuclear ribonucleoprotein C (hnRNP C) was identified as a cellular protein that interacts specifically with a heptameric U sequence in the c-myc IRES located between two alternative translation initiation codons CUG and AUG. Moreover, the addition of hnRNP C1 in an in vitro translation system enhanced translation of c-myc mRNA. Interestingly, hnRNP C was partially relocalized from the nucleus, where most of the hnRNP C resides at interphase, to the cytoplasm at the G2/M phase of the cell cycle. Coincidently, translation mediated through the c-myc IRES was increased at the G2/M phase when cap-dependent translation was partially inhibited. On the other hand, a mutant c-myc mRNA lacking the hnRNP C-binding site, showed a decreased level of translation at the G2/M phase compared to that of the wild-type message. Taken together, these findings suggest that hnRNP C, via IRES binding, modulates translation of c-myc mRNA in a cell cycle phase-dependent manner.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e34386 ◽  
Author(s):  
Alessandra Galati ◽  
Frédérique Magdinier ◽  
Valentina Colasanti ◽  
Serge Bauwens ◽  
Sébastien Pinte ◽  
...  

1991 ◽  
Vol 2 (9) ◽  
pp. 739-752 ◽  
Author(s):  
M Martins-Green ◽  
C Tilley ◽  
R Schwarz ◽  
C Hatier ◽  
M J Bissell

The gro genes encode for secreted proteins with sequence homologies to inflammatory mediators. Little is known about the function of these proteins or their regulation. The chicken gro (9E3/CEF4) is expressed abundantly in the cells of proliferating cultures but at very low levels in confluent cultures. In vivo, this gene is expressed in connective tissue and overexpressed at sites of injury, especially in areas of neovascularization. Here we provide a bridge between these observations by examining in culture the effect on 9E3 expression and DNA synthesis induced by cell damage and by addition of factors known to be released on wounding. We mimicked wounding by scraping swaths across confluent cultures of embryonic fibroblasts and determined the time dependence of expression of 9E3 mRNA and incorporation of 3H-thymidine. We find that 9E3 is (1) transiently expressed after "wounding" or serum-stimulation; (2) expressed in a cell cycle phase-dependent manner; it is triggered during the G0-G1 transition or early in G1 and subsides during S-phase; and (3) stimulated to high levels by a-fibroblast growth factor (aFGF), bFGF, transforming growth factor alpha (TGF alpha), and TGF beta, to intermediate levels by platelet-derived growth factor and not stimulated by epidermal growth factor. We also find that cells that are constantly cycling do not express 9E3, indicating that they skip either the portion of the cell cycle where 9E3 is induced or that they constitutively express a repressor of transcription or an RNA-degrading enzyme. Taken together, these observations suggest that the product of this gene could play more than one role in vivo. For example, in normal tissues the 9E3 protein could be involved in the exit of cells from the resting stage, whereas during wound healing the secreted protein or its cleavage products also could play a role in angiogenesis.


1990 ◽  
Vol 52 (5) ◽  
pp. 986-992
Author(s):  
Takeshi KONO ◽  
Tsukasa TANII ◽  
Masayoshi FURUKAWA ◽  
Nobuyuki MIZUNO ◽  
Shoji TANIGUCHI ◽  
...  

1996 ◽  
Vol 88 (1-2) ◽  
pp. 82-82a ◽  
Author(s):  
Magali OLIVIER ◽  
Charles THEILLET

Sign in / Sign up

Export Citation Format

Share Document