scholarly journals Heterogeneous Nuclear Ribonucleoprotein C Modulates Translation of c-myc mRNA in a Cell Cycle Phase-Dependent Manner

2003 ◽  
Vol 23 (2) ◽  
pp. 708-720 ◽  
Author(s):  
Jong Heon Kim ◽  
Ki Young Paek ◽  
Kobong Choi ◽  
Tae-Don Kim ◽  
Bumsuk Hahm ◽  
...  

ABSTRACT The c-myc proto-oncogene plays a key role in the proliferation, differentiation, apoptosis, and regulation of the cell cycle. Recently, it was demonstrated that the 5′ nontranslated region (5′ NTR) of human c-myc mRNA contains an internal ribosomal entry site (IRES). In this study, we investigated cellular proteins interacting with the IRES element of c-myc mRNA. Heterogeneous nuclear ribonucleoprotein C (hnRNP C) was identified as a cellular protein that interacts specifically with a heptameric U sequence in the c-myc IRES located between two alternative translation initiation codons CUG and AUG. Moreover, the addition of hnRNP C1 in an in vitro translation system enhanced translation of c-myc mRNA. Interestingly, hnRNP C was partially relocalized from the nucleus, where most of the hnRNP C resides at interphase, to the cytoplasm at the G2/M phase of the cell cycle. Coincidently, translation mediated through the c-myc IRES was increased at the G2/M phase when cap-dependent translation was partially inhibited. On the other hand, a mutant c-myc mRNA lacking the hnRNP C-binding site, showed a decreased level of translation at the G2/M phase compared to that of the wild-type message. Taken together, these findings suggest that hnRNP C, via IRES binding, modulates translation of c-myc mRNA in a cell cycle phase-dependent manner.

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e34386 ◽  
Author(s):  
Alessandra Galati ◽  
Frédérique Magdinier ◽  
Valentina Colasanti ◽  
Serge Bauwens ◽  
Sébastien Pinte ◽  
...  

2006 ◽  
Vol 17 (8) ◽  
pp. 3521-3533 ◽  
Author(s):  
Linda D. Kosturko ◽  
Michael J. Maggipinto ◽  
George Korza ◽  
Joo Won Lee ◽  
John H. Carson ◽  
...  

Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a trans-acting RNA-binding protein that mediates trafficking of RNAs containing the cis-acting A2 response element (A2RE). Previous work has shown that A2RE RNAs are transported to myelin in oligodendrocytes and to dendrites in neurons. hnRNP E1 is an RNA-binding protein that regulates translation of specific mRNAs. Here, we show by yeast two-hybrid analysis, in vivo and in vitro coimmunoprecipitation, in vitro cross-linking, and fluorescence correlation spectroscopy that hnRNP E1 binds to hnRNP A2 and is recruited to A2RE RNA in an hnRNP A2-dependent manner. hnRNP E1 is colocalized with hnRNP A2 and A2RE mRNA in granules in dendrites of oligodendrocytes. Overexpression of hnRNP E1 or microinjection of exogenous hnRNP E1 in neural cells inhibits translation of A2RE mRNA, but not of non-A2RE RNA. Excess hnRNP E1 added to an in vitro translation system reduces translation efficiency of A2RE mRNA, but not of nonA2RE RNA, in an hnRNP A2-dependent manner. These results are consistent with a model where hnRNP E1 recruited to A2RE RNA granules by binding to hnRNP A2 inhibits translation of A2RE RNA during granule transport.


2016 ◽  
Vol 119 (3) ◽  
pp. 544-551 ◽  
Author(s):  
Yan Liu ◽  
Weiqiang Chen ◽  
Pengcheng Zhang ◽  
Xiaodong Jin ◽  
Xinguo Liu ◽  
...  

1990 ◽  
Vol 10 (7) ◽  
pp. 3847-3851
Author(s):  
C H McGowan ◽  
P Russell ◽  
S I Reed

The product of the CDC2Hs gene is the protein kinase subunit of the M-phase promoting factor, which is required for entry into mitosis. The activity of this kinase is regulated in a cell cycle-dependent manner by reversible phosphorylation and through association with other proteins. We report here that in HeLa cells, the abundance of the CDC2Hs mRNA and the rate of synthesis of the encoded protein, p34, vary in a cell cycle-dependent manner.


1993 ◽  
Vol 13 (9) ◽  
pp. 5762-5770 ◽  
Author(s):  
S Piñol-Roma ◽  
G Dreyfuss

Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes, the structures that contain heterogeneous nuclear RNA and its associated proteins, constitute one of the most abundant components of the eukaryotic nucleus. hnRNPs appear to play important roles in the processing, and possibly also in the transport, of mRNA. hnRNP C proteins (C1, M(r) of 41,000; C2, M(r) of 43,000 [by sodium dodecyl sulfate-polyacrylamide gel electrophoresis]) are among the most abundant pre-mRNA-binding proteins, and they bind tenaciously to sequences relevant to pre-mRNA processing, including the polypyrimidine stretch of introns (when it is uridine rich). C proteins are found in the nucleus during the interphase, but during mitosis they disperse throughout the cell. They have been shown previously to be phosphorylated in vivo, and they can be phosphorylated in vitro by a casein kinase type II. We have identified and partially purified at least two additional C protein kinases. One of these, termed Cs kinase, caused a distinct mobility shift of C proteins on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These phosphorylated C proteins, the Cs proteins, were the prevalent forms of C proteins during mitosis, and Cs kinase activity was also increased in extracts prepared from mitotic cells. Thus, hnRNP C proteins undergo cell cycle-dependent phosphorylation by a cell cycle-regulated protein kinase. Cs kinase activity appears to be distinct from the well-characterized mitosis-specific histone H1 kinase activity. Several additional hnRNP proteins are also phosphorylated during mitosis and are thus also potential substrates for Cs kinase. These novel phosphorylations may be important in regulating the assembly and disassembly of hnRNP complexes and in the function or cellular localization of RNA-binding proteins.


1995 ◽  
Vol 15 (12) ◽  
pp. 6694-6701 ◽  
Author(s):  
C Caelles ◽  
H Hennemann ◽  
M Karin

GHF-1 is a member of the POU family of homeodomain proteins. It is a cell-type-specific transcription factor responsible for determination and expansion of growth hormone (GH)- and prolactin-expressing cells in the anterior pituitary. It was previously suggested that cyclic AMP (cAMP)-responsive protein kinase A (PKA) phosphorylates GHF-1 at a site within the N-terminal arm of its homeodomain, thereby inhibiting its binding to the GH promoter. These results, however, are inconsistent with the physiological stimulation of GH production by the cAMP pathway. As reported here, cAMP agonists and PKA do not inhibit GHF-1 activity in living cells and although they stimulate the phosphorylation of GHF-1, the inhibitory phosphoacceptor site within the homeodomain is not affected. Instead, this site, Thr-220, is subject to M-phase-specific phosphorylation. As a result, GHF-1 DNA binding activity is transiently inhibited during the M phase. This activity is regained once cells enter G1, a phase during which GHF-1 phosphorylation is minimal. Thr-220 of GHF-1 is the homolog of the mitotic phosphoacceptor site responsible for the M-phase-specific inhibition of Oct-1 DNA binding Ser-382. As this site is conserved in all POU proteins, it appears that all members of this group are similarly regulated. A specific kinase activity distinct in its substrate specificity and susceptibility to inhibitors from the Cdc2 mitotic kinase or PKA was identified in extracts of mitotic cells. This novel activity could be involved in regulating the DNA binding activity of all POU proteins in a cell cycle-dependent manner.


1984 ◽  
Vol 70 (1) ◽  
pp. 133-145 ◽  
Author(s):  
C.J. Weijer ◽  
G. Duschl ◽  
C.N. David

The relationship between the cell cycle phase of vegetative amoebae and prestalk and prespore differentiation in the slug stage were investigated in the slime mould Dictyostelium discoideum. Cells were synchronized by release from the stationary phase. Samples were taken at various times during the course of a synchronous cell doubling, fluorescently labelled and mixed with cells of random cell cycle phase from exponentially growing cultures. The fate of the fluorescently labelled cells was recorded at the slug stage. Cells early in the cycle exhibit strong prestalk sorting; cells taken later in the cycle exhibit strong prespore sorting. The period of prestalk sorting occurs immediately following mitosis and lasts about 1 h in a cell cycle of about 7 h duration. Accompanying the altered sorting behaviour is a marked changed in the prestalk-prespore proportions in slugs formed from synchronized populations of cells. Cells synchronized early in the cycle form slugs with 55% prespore cells; cells synchronized late in the cycle form slugs with 90% prespore. The results are discussed in terms of models for the formation of the prestalk-prespore pattern in slugs.


Sign in / Sign up

Export Citation Format

Share Document