scholarly journals Synthesis, Characterization and Biological Evaluation of Schiff Base Transition Metal Complexes Derived from 4-Nitrobenzene-1,2-diamine and 5-Chloroisatin

2020 ◽  
Vol 32 (9) ◽  
pp. 2324-2328
Author(s):  
NETRA PAL SINGH ◽  
KAUSHAL KUMAR ◽  
GAJENDRA KUMAR ◽  
ANUROOP KUMAR

A series of transition metal complexes of the type [MLX2], where M = Mn(II), Fe(II), Co(II), Ni(II), X = Cl–/CH3COO– and L = Schiff base derived from 4-nitrobenzene-1,2-diamine and 5-chloroisatin have been synthesized and characterized by elemental analysis, molar conductance, IR, UV-visible, magnetic moments measurement, 1H & 13C NMR and mass spectral studies. On the basis of physico-chemical studies and spectral evaluation, an octahedral geometry have been proposed for all metal(II) complexes. The antimicrobial activity of ligand and its metal complexes have been additionally screened against bacteria and fungi. Metal(II) complexes show good activity as compared to ligand towards studied microorganisms and also metal complexes checked for their catalytic properties for benzoylation of phenol.

2014 ◽  
Vol 79 (4) ◽  
pp. 421-433 ◽  
Author(s):  
Abhay Srivastava ◽  
Netra Singh ◽  
Chandra Shriwastaw

A series of novel binuclear transition metal complexes was synthesized by reaction of a Schiff base ligand (1-Methyl-2-(2-oxo-1,2-dihydro-pyrimidin-4-ylimino)-propylideneamino-acetic acid) (LaH) derived from 4-amino-pyrimidine-2-one, diacetyl, glycine and corresponding chloride salt of Cu(II), Ni(II), Co(II) and Zn(II) metals in 1:1 (metal : ligand) molar ratio. The compounds were characterized by elemental analyses, molar conductance measurement, magnetic moment measurement and various spectral studies viz. IR, UV-visible, 1H-NMR, 13C-NMR, EPR and ESI-MS. Molar conductance measurement data revealed non-electrolytic nature of metal complexes. Electronic absorption spectral data, electronic paramagnetic resonance parameters and magnetic moment values revealed an octahedral geometry for binuclear metal complexes. Cyclic voltammetric study of Ni(II) complex shows a couple of one electron anodic responses near 0.70 V and 1.10 V. In vitro biological activity of Schiff base ligand and binuclear complexes has been checked against bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi) and fungi (Candida albicans and Candida parapsilosis) to assess their antibacterial and antifungal properties.


2018 ◽  
Vol 69 (7) ◽  
pp. 1678-1681
Author(s):  
Amina Mumtaz ◽  
Tariq Mahmud ◽  
M. R. J. Elsegood ◽  
G. W. Weaver

New series of copper (II), cobalt (II), zinc (II), nickel (II), manganese (II), iron (II) complexes of a novel Schiff base were prepared by the condensation of sulphadizine and pyridoxal hydrochloride. The ligand and metal complexes were characterized by utilizing different instrumental procedures like microanalysis, thermogravimetric examination and spectroscopy. The integrated ligand and transition metal complexes were screened against various bacteria and fungus. The studies demonstrated the enhanced activity of metal complexes against reported microbes when compared with free ligand.


2020 ◽  
Vol 32 (7) ◽  
pp. 1768-1772
Author(s):  
Anita Rani ◽  
Manoj Kumar ◽  
Hardeep Singh Tuli ◽  
Zahoor Abbas ◽  
Vinit Prakash

The study describes the synthesis, characterization and biological activity of a novel Schiff base ligand and its transition metal complexes. The Schiff base ligand was obtained by a condensation reaction between 4-hydroxy-3-methoxybenzaldehyde (p-vanillin) and hydrazine hydrate using ethanol as solvent. A new series of Ni(II) and Fe(III) complexes were also derived by reaction of prepared Schiff base ligand with NiCl2 and FeCl3. Both the ligand and its metal complexes were characterized by solubility, melting point and elemental analysis. These compounds were further identified by analytical techniques, FTIR, NMR and mass spectrometry. The ligand and its transition metal complexes were also subjected to in vitro biological activities i.e. antimicrobial, antiangiogenic and DNA photo cleavage. For antimicrobial activity compounds were tested against two strains of bacteria and two strains of fungi. Different concentrations of prepared compounds were treated with fertilized chicken eggs and plasmid DNA to find out antiangiogenic and DNA photocleavage activity, respectively.


2018 ◽  
Vol 12 (1) ◽  
Author(s):  
Shubham Kashyap ◽  
Sanjiv Kumar ◽  
Kalavathy Ramasamy ◽  
Siong Meng Lim ◽  
Syed Adnan Ali Shah ◽  
...  

2011 ◽  
Vol 8 (1) ◽  
pp. 443-448 ◽  
Author(s):  
R. H. Patel ◽  
B. L. Hiran

The ligand, 2-(2-furanylmethylaminocarbonyl)benzoic acid (FMBA) and it’s transition metal complexes have been synthesized and characterized by elemental analysis, spectral studies, magnetic moments and thermal studies. The antifungal activity of all the samples was monitored against common fungi.


2009 ◽  
Vol 2 (1) ◽  
pp. 114-126 ◽  
Author(s):  
Y. Prashanthi ◽  
Shiva Raj

The Schiff bases namely MIMFMA, MIMTMA and MIPMA have been prepared by reacting 3-amino-5-methyl isoxazole with 5-methyl furan-2-carboxyaldehyde, 5-methyl thiphene-2-carboxaldehyde and pyridine-2-carboxaldehyde. The Cu(II), Ni(II), Co(II), Zn(II) and VO(IV) have been prepared by reacting metal chlorides with those  Schiff bases in an alchololic medium. The complexes are electrolytes in DMSO. These have been  characterized by using elemental analysis, IR, UV-VIS, 1H, 13C, mass spectra, magnetic susceptibility, conductance measurements and thermo gravimetric studies. The complexes were found to have composition ML2. On basis of elemental and spectral studies, six coordinated geometry is assigned for these complexes. The Schiff bases act as neutral and bidentate and coordinate through the azomethine nitrogen and furfural oxygen, thiophene sulphur and pyridine nitrogen, respectively. The synthesized ligands and their metal complexes were screened against bacteria and fungi.  The activity data show that the metal complexes are more potent than the parent Schiff bases. Keywords; Schiff bases; Transition metal complexes; Spectral studies; Antimicrobial studies. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v2i1.2732                  J. Sci. Res. 2 (1), 114-126 (2010)   


2017 ◽  
Vol 13 (9) ◽  
pp. 6513-6519
Author(s):  
Anil Kumar M R ◽  
Shanmukhappa S ◽  
Rangaswamy B E ◽  
Revanasiddappa M

Transition metal complexes of Cu(II), Co(II), Ni(II), Zn(II), Cd(II) and Mn(II) have been synthesized with the Schiff base ligand 5-Sub-N-(2-mercaptophenyl)salicylideneimine. Elemental analysis of these complexes suggest that these metal ions forms complexes of type ML(H2O)stoichiometry for Cu(II), Co(II), Ni(II), Zn(II), Cd(II) and Mn(II). The ligand behaves as tridentate and forms coordinate bonds through O, S and N atoms. Magnetic susceptibility, IR, UV – Visible, Mass and ESR spectral studies suggest that Cu(II), Ni(II) complexes posses square planar geometry, whereas Co(II), Zn(II), Cd(II) and Mn(II) complexes posses tetrahedral geometry. The complexes were tested for their antimicrobial activity against the bacterial strains Staphylococcus aureus and Bacillus subtilis.The Schiff base metal complexes evaluated for their antifungal activity against the fungi A. niger and C. oxysporum. The DNA cleavage studies of Schiff base complexes werestudied using Calf – Thymus DNA by agarose gel electrophoresis method.


2012 ◽  
Vol 9 (1) ◽  
pp. 389-400 ◽  
Author(s):  
B. Anupama ◽  
M. Padmaja ◽  
C. Gyana Kumari

A new series of transition metal complexes of Cu(II),Ni(II),Co(II), Zn(II) and VO(IV) have been synthesized from the Schiff base ligand (L) derived from 4-amino antipyrine and 5- bromo salicylaldehyde. The structural features of Schiff base and metal complexes were determined from their elemental analyses, thermogravimetric studies, magneticsusceptibility, molar conductivity, ESI-Mass, IR, UV-VIS,1H NMR and ESR spectral studies. The data show that the complexes have composition of ML2type. The UV-VIS, magnetic susceptibility and ESR spectral data suggest an octahedral geometry around the central metal ion. Biological screening of the complexes reveals that the Schiff base transition metal complexes show significant activity against microorganisms. Binding of Co(II) complex with calf thymus DNA (CT DNA) was studied by spectral methods.


Sign in / Sign up

Export Citation Format

Share Document