scholarly journals Structural and Biological Studies on Transition Metal Complexes of 4-Aminoantipyrine Derivative

2020 ◽  
Vol 32 (11) ◽  
pp. 2846-2854
Author(s):  
V. Soundaranayaki ◽  
A. Kulandaisamy

Novel tetra dentate Cu(II), Ni(II), Co(II), VO(II) and Zn(II) Schiff base complexes have been synthesized from salicylidene-4-iminoantipyrine and tyrosine. The synthesized Schiff base complexes was characterized by powder X-ray diffraction studies (XRD), scanning electron microscopy (SEM), FT-IR, ESR, 1H NMR, 13C NMR, UV-vis, molar conductance and magnetic susceptibility measurements. The general formula of complexes was confirmed as [ML] type [M = Cu(II), Co(II), Zn(II), Ni(II) and VO(II); L = C27H24N4O4]. Magnetic susceptibility, IR and UV-vis, spectral data showed that all the complexes have square planar geometry except vanadyl complex which suggests square pyramidal geometry. Lower molar conductance values proved that all the chelates were non-electrolytic nature. The X-band ESR spectra of [CuL] and [VOL] complexes in DMSO solution suggest that the complexes were predominant covalent character. Powder XRD and SEM image pattern evidenced that all the compounds were crystalline in nature and their size ranges from 100-40 nm. Calf thymus DNA binding potential of [CuL] and [VOL] complexes shows that the binding occurs through intercalation mode with low binding constant. The analgesic, CNS, antiulcer and antimicrobial activities of the investigated compounds report reveals that the chelates were significant effect than free Schiff base.

2020 ◽  
Vol 36 (05) ◽  
pp. 954-957
Author(s):  
Shivani Prakash ◽  
Anju Kumari Gupta ◽  
Sachin Prakash ◽  
D. Prakash

A series of new hetero binuclear complexes of copper(II) and lead(II) using Schiff base have been synthesized. The Schiff base has been derived from the condensation reaction between Salicylaldehyde and 1,2-Ethylenediamine. The hetero binuclear complexes have been characterized by using elemental analysis, molar conductance measurement, magnetic susceptibility studies, UV-Vis and IR spectra. The studies revealed square planar geometry for the complexes with coordination number four.


2019 ◽  
Vol 41 (6) ◽  
pp. 1055-1055
Author(s):  
Ahmed Hassan Abdel Salam Ahmed Hassan Abdel Salam

Various six coordinated copper(II) complexes of novel (E)-4-hydroxy-6-methyl-3-(1-(p-tolylimino) ethyl-2H-pyran-2-one (HL1) and (E)-3-(1-(4-chlorophenylimino) ethyl-4-hydroxy-6-methyl-2H-pyran-2-one (HL2) derived from 3-Acetyl-2-hydroxy-6-methyl-4H-pyran-4-one (dehydroacetic acid, DHA) and aniline derivatives (p-chloroaniline and p-toluidine) were fabricated. The coordination mode of Schiff base donor atoms with copper ions was well investigated by thermal and elemental analyses, FTIR, UV-vis, 1H, 13C-NMR spectral tools and measurements of magnetic susceptibility as well as molar conductance at ambient temperature. The novel neutral bidentate Schiff base ligands (HL1 and HL2) linked to Cu(II) cation via the azomethine-N and hydroxyl-O atoms and to acetate and nitrate anions in bidentate bridging mode to form polymeric octahedral complexes. The thermal study showed the stepwise removal of water of hydration and anions and decomposition of these chelates. The decomposition products were examined and the relative thermal stabilities of these chelates were evaluated. Different parameters of activation were derived from the thermal curves by Coats–Redfern methodology. The degradation steps of the metal complexes had positive free energy values indicating their non-spontaneous nature. The antifungal and antibacterial activities of all investigated compounds were also studied. The magnetic susceptibility measurements and conductance data were investigated and provided evidence for the non-electrolytic character of the complexes.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Sanjay Goel ◽  
Sulekh Chandra ◽  
Sudhanshu Dhar Dwivedi

Co(II) and Ni(II) complexes of general composition ML2X2(M = Co(II), Ni(II); X = Cl−,NO3 −) were synthesized by the condensation of metal salts with semicarbazone/thiosemicarbazone derived from 2-acetyl coumarone. The ligands and metal complexes were characterized by NMR, elemental analysis, molar conductance, magnetic susceptibility measurements, IR, and atomic absorption spectral studies. On the basis of electronic, molar conductance and infrared spectral studies, the complexes were found to have square planar geometry. The Schiff bases and their metal complexes were tested for their antibacterial and antioxidant activities.


2019 ◽  
Vol 9 (1) ◽  
pp. 3776-3782 ◽  

A Schiff base ligand L was prepared from the condensation of 2-amino-3-benzyloxypyridine and 5-chlorosalicylaldehyde. The ligand forms complexes with Co(III) and VO(IV) in good yield. Design, synthesized and characterization of cobalt(III) and oxidovanadium(IV) with (E)-2-((3-(benzyloxypyridinylimino) methyl)-4-chlorophenol (L) are described. The prepared complexes were characterized by different analytical techniques elemental analysis, molar conductance, infrared spectra, 1H and 13C NMR, mass, electronic absorption and TGA. The coordination geometry is octahedral in C1 and C2, while complexes C3 and C4 show a square-pyramidal geometry. Numerous biological studies have been conducted on L and Co(III) and VO(IV) complexes. The results of antimicrobial studies indicated that all compounds had antimicrobial activity against bacteria and fungi. The binding of metal complexes with BSA (bovine serum albumin) was reported. The results of these indicated that Co(III) and VO(IV) are significantly quenching fluorescence intensity of BSA, that results in changing its conformation and results in a static quenching.


2017 ◽  
Vol 13 (9) ◽  
pp. 6513-6519
Author(s):  
Anil Kumar M R ◽  
Shanmukhappa S ◽  
Rangaswamy B E ◽  
Revanasiddappa M

Transition metal complexes of Cu(II), Co(II), Ni(II), Zn(II), Cd(II) and Mn(II) have been synthesized with the Schiff base ligand 5-Sub-N-(2-mercaptophenyl)salicylideneimine. Elemental analysis of these complexes suggest that these metal ions forms complexes of type ML(H2O)stoichiometry for Cu(II), Co(II), Ni(II), Zn(II), Cd(II) and Mn(II). The ligand behaves as tridentate and forms coordinate bonds through O, S and N atoms. Magnetic susceptibility, IR, UV – Visible, Mass and ESR spectral studies suggest that Cu(II), Ni(II) complexes posses square planar geometry, whereas Co(II), Zn(II), Cd(II) and Mn(II) complexes posses tetrahedral geometry. The complexes were tested for their antimicrobial activity against the bacterial strains Staphylococcus aureus and Bacillus subtilis.The Schiff base metal complexes evaluated for their antifungal activity against the fungi A. niger and C. oxysporum. The DNA cleavage studies of Schiff base complexes werestudied using Calf – Thymus DNA by agarose gel electrophoresis method.


2017 ◽  
Vol 30 (3) ◽  
pp. 58
Author(s):  
Rehab Kadem Rahem Al-Shemary

New Schiff base and their Mn(II),Co(II),Ni(II), Cu(II) and Hg(II) complexes formed by the condensation of O-phathaldehyde and ethylene diamine (2:1) to give ligand (L1) in the first step ,then the ligand (L1) with 2- aminophenol (1:2) to give ligand (L2) were prepared by classic addition through microwave method . These compounds (Ligands and complexes) have been diagnosed electronic spectra, FT-IR,1H-&13C-NMR (only ligand), magnetic susceptibility, elemental microanalysis and molar conductance measurements. Analytical values displayed that all the complexes appeared (metal: ligand) (1:1) ratio with the six chelation. All the compounds appear a high activity versus four types of bacteria such as; (Escherichia coli), (Staphylococcus aureus),(Bacillus btilis), (Staphylococcus aureus) and (Pseudomonas aeruginosin). 


2021 ◽  
Vol 34 (1) ◽  
pp. 183-190
Author(s):  
Mahak Dalal ◽  
Manish Kumar ◽  
K.K. Verma ◽  
Sapana Garg

This article reports the synthesis, characterization and antimicrobial screening of a tridentate 2-[(2-hydroxyphenyl)imino methyl]-1-naphthol ligand (H2AP) and its organotellurium(IV) complexes. Structural characterization of the synthesized ligand and complexes was confirmed by using FT-IR, 1H NMR, 13C NMR, UV-vis, mass spectrometry, molar conductance and elemental analysis. Geometry of all the synthesized compounds has been optimized and their DFT based chemical reactivity descriptors were calculated. DFT and spectral data studies revealed distorted square pyramidal geometry for the tellurium(IV) complexes. In vitro antimicrobial activities of the synthesized ligand and its tellurium(IV)complexes were evaluated against two Gram-positive, two Gram-negative bacterial strains and three fungal strains. The tellurium(IV) complexes exhibited promising activity as compared to the Schiff base ligand.


2013 ◽  
Vol 10 (3) ◽  
pp. 569-582
Author(s):  
Baghdad Science Journal

New Fe(II),Co(II),Ni(II),Cu(II) and Zn(II) Schiff base complexes which have the molar ratio 2:1 metal to ligand of the general formula [M2( L) X4] (where L=bis(2-methyl furfuraldene)-4-4`-methylene bis(cyclo-hexylamine) ) were prepared by the reaction of the metal salts with the ligand of Schiff base derived from the condensation of 2:1 molar ratio of 2-acetyl furan and 4-4`-methylene bis (cyclohexylamine). The complexes were characterized by elemental analysis using atomic absorption spectrophotometer ,molar conductance measurements, infrared, electronic spectra,and magnetic susceptibility measurement. These studies revealed binuclear omplexes. The metal(II) ion in these complexes have four coordination sites giving the most expected tetrahedral structure and square planar for Cu(II)ion.


2020 ◽  
Vol 15 (3) ◽  
pp. 137-143

A Schiff base, 2-[4-(N,N-dimethylamino)benzylidene]benzoic acid has been synthesized by the condensation of 4-(N,N-dimethylamino)benzaldehyde and 2-amino-benzoic acid in 1:1 molar stoichiometry. The Schiff base complexes were synthesized from the chloride salts of Fe(II), Cu(II) and Zn(II) in ethanolic medium and elucidated by infrared spectroscopy, CHN elemental analysis, atomic absorption spectroscopy as well as conductivity and magnetic susceptibility measurements. The solubility and thermal stability were also determined. The metal(II) complexes are coloured solids that are soluble in DMF and DMSO. The melting point of the Schiff base was found to be 177 oC, while the complexes decompose within a temperature range of 202–261 oC suggestive of rather good thermal stability. The molar conductance values were low, indicating non-electrolytic nature of the complexes. Elemental analysis revealed that the stoichiometries of the synthesized complexes are of 1:2 metal-to-ligand ratio. All complexes were hydrated. The spectroscopic and magnetic susceptibility data revealed that the complexes possess four- coordinate distorted square planar stereochemistry, whereas the Schiff base behaves as monoanionic bidentate ligand with the nitrogen atom of the azomethine (C=N) and carboxylate oxygen (COO-) as donor sites. The Schiff base and its corresponding metal(II) complexes were assayed against a number of bacterial and fungal strains to evaluate their inhibitory potentials. All the complexes showed significant bactericidal and fungicidal activities against the tested organisms.


2021 ◽  
Vol 25 (9) ◽  
pp. 1599-1603
Author(s):  
I. ADO ◽  
J. NA’ALIYA ◽  
S. SANI ◽  
M.M. HALEELU

The Schiff base was synthesized by condensation of 2-hydroxy-1-naphthaldehyde with 3- aminobenzoic acid in 1:1 molar ratio. The Schiff base ligand formed complexes with Co (II), Ni (II), Cu (II) and Zn (II) acetate via mechanochemical synthesis. The synthesized compounds were characterized by solubility test, thermal analysis, FT-IR, powder x-ray diffraction, molar conductance measurement, magnetic susceptibility and elemental analysis. The Schiff base has a melting point of 190 oC. The decomposition temperature of complexes was found to be in the range 289 – 302 oC. The Schiff base and its metal (II) complexes were soluble in DMF, DMSO and sparingly soluble in acetonitrile, chloroform, diethyl ether and insoluble in n-hexane which indicate the polar nature of the synthesized compounds. The IR spectral analysis of the free Schiff base shows a band at 1622 cm-1, assigned to v(C=N) stretching vibrations. This band was shifted in the spectra of complexes (1607 – 1633 cm-1), indicating coordination of the Schiff base to the metal ion through the azomethine group. The molar conductance of complexes determined are in the range 9.51 – 14.87 Ohm-1cm2mol-1 which indicate the non-electrolytic nature in DMF. Magnetic susceptibility measurements of Co (II), Ni (II) and Cu (II) complexes exhibit a magnetic moment in the range 1.25 – 3.08 BM. The values correspond to square-planar geometry. The magnetic moment value of Zn (II) complex indicates a diamagnetic behaviour. The elemental analysis of the complexes for C, H and N determined showed that the observed and the calculated percentages of the elements are in good agreement.


Sign in / Sign up

Export Citation Format

Share Document