scholarly journals Some new transition metal complexes of bis (2-methyl furfuraldene)-4,4`-methylene bis (cyclohexylamine) ligand

2013 ◽  
Vol 10 (3) ◽  
pp. 569-582
Author(s):  
Baghdad Science Journal

New Fe(II),Co(II),Ni(II),Cu(II) and Zn(II) Schiff base complexes which have the molar ratio 2:1 metal to ligand of the general formula [M2( L) X4] (where L=bis(2-methyl furfuraldene)-4-4`-methylene bis(cyclo-hexylamine) ) were prepared by the reaction of the metal salts with the ligand of Schiff base derived from the condensation of 2:1 molar ratio of 2-acetyl furan and 4-4`-methylene bis (cyclohexylamine). The complexes were characterized by elemental analysis using atomic absorption spectrophotometer ,molar conductance measurements, infrared, electronic spectra,and magnetic susceptibility measurement. These studies revealed binuclear omplexes. The metal(II) ion in these complexes have four coordination sites giving the most expected tetrahedral structure and square planar for Cu(II)ion.

2020 ◽  
Vol 36 (05) ◽  
pp. 954-957
Author(s):  
Shivani Prakash ◽  
Anju Kumari Gupta ◽  
Sachin Prakash ◽  
D. Prakash

A series of new hetero binuclear complexes of copper(II) and lead(II) using Schiff base have been synthesized. The Schiff base has been derived from the condensation reaction between Salicylaldehyde and 1,2-Ethylenediamine. The hetero binuclear complexes have been characterized by using elemental analysis, molar conductance measurement, magnetic susceptibility studies, UV-Vis and IR spectra. The studies revealed square planar geometry for the complexes with coordination number four.


2013 ◽  
Vol 10 (3) ◽  
pp. 618-626
Author(s):  
Baghdad Science Journal

New binuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Hg(II) Complexes of N2S2 tetradentate or N4S2 hexadentate symmetric Schiff base were prepared by the condensation of butane-1,4-diylbis(2-amino ethylcarbamodithioate) with 3-acetyl pyridine. The complexes having the general formula [M2LCl4] (where L=butane-1,4-diyl bis (2-(z)-1-(pyridine-3-ylethylidene amino))ethyl carbamodithioate, M= Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Hg(II)), were prepared by the reaction of the mentioned metal salts and the ligand. The resulting binuclear complexes were characterized by molar conductance, magnetic susceptibility ,infrared and electronic spectral measurements. This study indicated that Mn(II), Ni(II) and Cu(II) complexes have octahedral geometry, while Co(II) Zn(II) and Hg(II) complexes are proposed to be tetrahedral structure .K


2020 ◽  
Vol 32 (11) ◽  
pp. 2846-2854
Author(s):  
V. Soundaranayaki ◽  
A. Kulandaisamy

Novel tetra dentate Cu(II), Ni(II), Co(II), VO(II) and Zn(II) Schiff base complexes have been synthesized from salicylidene-4-iminoantipyrine and tyrosine. The synthesized Schiff base complexes was characterized by powder X-ray diffraction studies (XRD), scanning electron microscopy (SEM), FT-IR, ESR, 1H NMR, 13C NMR, UV-vis, molar conductance and magnetic susceptibility measurements. The general formula of complexes was confirmed as [ML] type [M = Cu(II), Co(II), Zn(II), Ni(II) and VO(II); L = C27H24N4O4]. Magnetic susceptibility, IR and UV-vis, spectral data showed that all the complexes have square planar geometry except vanadyl complex which suggests square pyramidal geometry. Lower molar conductance values proved that all the chelates were non-electrolytic nature. The X-band ESR spectra of [CuL] and [VOL] complexes in DMSO solution suggest that the complexes were predominant covalent character. Powder XRD and SEM image pattern evidenced that all the compounds were crystalline in nature and their size ranges from 100-40 nm. Calf thymus DNA binding potential of [CuL] and [VOL] complexes shows that the binding occurs through intercalation mode with low binding constant. The analgesic, CNS, antiulcer and antimicrobial activities of the investigated compounds report reveals that the chelates were significant effect than free Schiff base.


2020 ◽  
Vol 12 (1) ◽  
pp. 251-258
Author(s):  
S. Isyaku ◽  
H.N. Aliyu ◽  
E.C. Ozoro ◽  
T. Abubakar

Manganese(II) complexes of Schiff bases; 2-acetylthiophene-4‑phenylthiosemi-carbazone (AT-PTSC) and 2-furylmethylketone-4-phenylthiosemi-carbazone  (AF‑PTSC) derived from condensation of 2-acetylthiophene and 2-furylmethylketone (2-acetylfuran) each with 4-phenylthiosemicarbazide in (1:1 molar ratio) ethanol, have been synthesized. The Schiff bases and the Mn(II) complexes were characterized on the basis of melting point/decomposition temperature, solubility, magnetic susceptibility, infrared spectra, molar conductance measurements,  elemental and gravimetric  analyses. The Mn(II) complexes show moderate values of decomposition temperatures. The Schiff bases and the complexes were soluble in some common organic solvents. Infrared spectral data of the Schiff bases and their complexes, indicate coordination of the Schiff bases to the metal(II) ion via azomethine nitrogen. The effective magnetic moment of the Mn(II) complexes suggested an octahedral geometry. The molar conductance values of the complexes show that the complexes are electrolytes. The results of the elemental analysis of the ligands and their complexes are in good agreement with the calculated values, suggesting a 1:2 (metal-ligand) ratio. Antimicrobial screenings of the ligands and their complexes were conducted against gram-positive (Staphylococcus aureus,) and two gram-negative (Salmonella typhi, and Escherichia coli) bacteria specie. Also three fungi mainly (Candida albicans, Mucus indicus and Aspergillus flavus) were tested. The results showed that both the ligands and the complexes are active against the bacteria and the fungi specie. Keywords: Ligand, Schiff base, 4-phenylthiosemicarbazide, 2-acetylthiophene, 2-acetylfuran molar conductivity, magnetic susceptibility, elemental analysis.


Author(s):  
Paresh S. More ◽  
Bipin H. Mehta

Transition metal complexes of the type ML1 [Where M= Co(II),Ni(II),Cu(II) and Zn(II), L= Schiff base of 5 nitro-salicylaldehyde and p-anisidine were characterized by using 1H NMR, TGA, Diffused reflectance and ESR spectroscopy. On the basis of above studies Co(II), Ni(II) shows tetrahedral structure, Cu(II) and Zn(II) shows square planar structure.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Sanjay Goel ◽  
Sulekh Chandra ◽  
Sudhanshu Dhar Dwivedi

Co(II) and Ni(II) complexes of general composition ML2X2(M = Co(II), Ni(II); X = Cl−,NO3 −) were synthesized by the condensation of metal salts with semicarbazone/thiosemicarbazone derived from 2-acetyl coumarone. The ligands and metal complexes were characterized by NMR, elemental analysis, molar conductance, magnetic susceptibility measurements, IR, and atomic absorption spectral studies. On the basis of electronic, molar conductance and infrared spectral studies, the complexes were found to have square planar geometry. The Schiff bases and their metal complexes were tested for their antibacterial and antioxidant activities.


2020 ◽  
Vol 12 (1) ◽  
pp. 85-92
Author(s):  
S. Isyaku ◽  
H.N. Aliyu ◽  
E.C. Ozoro ◽  
T. Abubakar

Manganese (II) complexes of Schiff bases; 2-acetylthiophene 4‑phenylthiosemi-carbazone (AT-PTSC) and 2-furylmethylketone-4-phenylthiosemi-carbazone (AF‑PTSC) derived from condensation of 2-acetylthiophene and 2-furylmethylketone (2-acetylfuran) each with 4-phenylthiosemicarbazide in (1:1 molar ratio) ethanol, have been synthesized. The Schiff bases and the Mn(II) complexes were characterized on the basis of melting point/decomposition temperature, solubility, magnetic susceptibility, infrared spectra, molar conductance measurements,  elemental and gravimetric  analyses. The Mn(II) complexes show moderate values of decomposition temperatures. The Schiff bases and the complexes were soluble in some common organic solvents. Infrared spectral data of the Schiff bases and their complexes, indicate coordination of the Schiff bases to the metal(II) ion via azomethine nitrogen. The effective magnetic moment of the Mn(II) complexes suggested an octahedral geometry. The molar conductance values of the complexes show that the complexes are electrolytes. The results of the elemental analysis of the ligands and their complexes are in good agreement with the calculated values, suggesting a 1:2 (metal-ligand) ratio. Antimicrobial screenings of the ligands and their complexes were conducted against gram-positive (Staphylococcus aureus,) and two gram-negative (Salmonella typhii, and Escherichia coli) bacteria specie. Also three fungi mainly (Candida albicans, Mucus indicus and Aspergillus flavus) were tested. The results showed that both the ligands and the complexes are active against the bacteria and the fungi specie. Keywords: Ligand, Schiff base, 4-phenylthiosemicarbazide, 2-acetylthiophene, 2-acetylfuran molar conductivity, magnetic susceptibility, elemental analysis.


Author(s):  
Paresh S. More ◽  
Bipin H. Mehta

Transition metal complexes of the type ML.nH2O [Where M= Co(II),Ni(II),Cu(II) and Zn(II), L= Schiff base of 5 nitro salicylaldehyde and anthranalic acid, n= 0,1 …..] were characterized by using 1H NMR,TGA, Diffused refluctance and ESR spectroscopy. On the basis of above studies Co(II), Ni(II) shows tetrahedral structure, Cu(II) shows binuclear structure and Zn(II) shows square planar structure.


2020 ◽  
Vol 3 (2) ◽  
pp. 249-256
Author(s):  
Olubunmi Adewusi ◽  

Novel Schiff base 2-((E)-(1H-indol-5-ylimino)methyl)-4-nitrophenol ligand and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes were synthesized by the stoichiometric reactions between the metal (II) ions and ligand in molar ratio M:L (1:1). The synthesized compounds were characterized using melting point, solubility, molar conductance, room temperature magnetic susceptibility, infra-red and electronic spectroscopies. The assignments of four-coordinate tetrahedral/square planar geometries and the bidentate nature to the complexes was corroborated by IR, electronic spectroscopies, and magnetic moments. The Pd(II) complex however was assigned an octahedral geometry. The in-vitro antimicrobial studies revealed the potential of some of the compounds as antimicrobial agents. The ligand and its metal complexes exhibited good to moderate antimicrobial activity against tested bacteria with selective inactivity against P. mirabilis and P. aureginosa. Keywords: 2-((E)-(1H-indol-5-ylimino)methyl)-4-nitrophenol, magnetic susceptibility, square planar geometry, inhibitory zone.


2018 ◽  
Vol 31 (2) ◽  
pp. 115
Author(s):  
Kaleda Kalaf gabar

      The complexes of Schiff base (6-[Hydroxy - benzylidene)-amino]-pyrimidine-2,4-diol ) (L) with Mn(II), Fe(II), Co(II) and Ni(II) were prepared. The Schiff base and complexes have been characterized by FT-IR, 1H-NMR, UV-Vis, LC-mass spectra, magnetic moment, elemental microanalyses (C.H.N.), chloride containing, atomic absorption and molar conductance. The Schiff base, metal salts and complexes were also screened for their bioactivity such as antibacterial and antifungal.


Sign in / Sign up

Export Citation Format

Share Document