scholarly journals STUDY ON FIXING HEAVY METALS BY CEMENTITIOUS MATERIALS WITH MUNICIPAL WASTE COMBUSTION ASH, OPC, BLAST FURNACE SLAG AND ANHYDRITE

2012 ◽  
Vol 66 (1) ◽  
pp. 600-606
Author(s):  
Takayuki FUKUNAGA ◽  
Nobuaki OTSUKI ◽  
Tsuyoshi SAITO ◽  
Yuji MAENO
Author(s):  
Hitoshi Owada ◽  
Tomoko Ishii ◽  
Mayumi Takazawa ◽  
Hiroyasu Kato ◽  
Hiroyuki Sakamoto ◽  
...  

A “realistic alteration model” is needed for various cementitious materials. Hypothetical settings of mineral composition calculated based on the chemical composition of cement, such as Atkins’s model, have been used to estimate the alteration of cementitious material. However, model estimates for the concentration of certain elements such as Al and S in leachate have been different from experimental values. In a previous study, we created settings for a mineralogical alteration model by taking the initial chemical composition of cementitious materials from analysis results in experiments and applying their ratios to certain hydrated cement minerals, then added settings for secondary generated minerals in order to account for Ca leaching. This study of alteration estimates for ordinary portland cement (OPC) in groundwater showed that the change in Al and S concentrations in simulated leachate approached values for actual leachate[1]. In the present study, we develop an appropriate mineral alteration model for blended cementitious materials and conduct batch-type leaching experiments that use crushed samples of blast furnace slag cement (BFSC), silica cement (SC), and fly ash cement (FAC). The cement blends in these experiments used OPC blended with blast furnace slag of 70 wt.%, silica cement consisting of an amorphous silica fine powder of 20 wt.%, and fly ash of 30 wt.%. De-ionized water was used as the leaching solution. The solid-liquid ratios in the leaching tests were varied in order to simulate the alteration process of cement hydrates. The compositions of leachate and minerals obtained from leaching tests were compared with those obtained from models using hypothetical settings of mineral composition. We also consider an alteration model that corresponds to the diversity of these materials. As a result of applying the conventional OPC model to blended cementitious materials, the estimated Al concentration in the aqueous solution was significantly different from the measured concentration. We therefore propose an improved model that takes better account of Al behavior by using a more reliable initial mineral model for Al concentration in the solution.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fusheng Niu ◽  
Yukun An ◽  
Jinxia Zhang ◽  
Wen Chen ◽  
Shengtao He

In this study, the influence of steel slag (SS) content on the strength of the cementitious materials was investigated. The quaternary active cementitious material (CaO-SiO2-Al2O3-SO3) was prepared using various proportions of steel slag (SS), granulated blast furnace slag (BFS), and desulfurized gypsum (DG). The mechanism of synergistic excitation hydration of the cementitious materials was examined using various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR). The strength of the mortar test block was initially increased and decreased later with the increase of the SS content. Mortar test block with 20% steel slag, 65% granulated blast furnace slag, and 15% desulfurized gypsum with 0.35 water-binder ratio showed the highest compressive strength of 57.3 MPa on 28 days. The free calcium oxide (f-CaO) in the SS reacted with water and produced calcium hydroxide (Ca(OH)2) which created an alkaline environment. Under the alkaline environment, the alkali-activated reaction occurred with BFS. In the early stage of hydration reaction, calcium silicate hydrate (C-S-H) gel and fibrous hydration product ettringite (AFt) crystals were formed, which provided early strength to the cementitious materials. As the hydration reaction progressed, the interlocked growth of C-S-H gel and AFt crystals continued and promoted the increase of the strength of the cementitious system.


2018 ◽  
Vol 35 (4) ◽  
pp. 336-340
Author(s):  
Yong-Jun Kim ◽  
Nam-Il Uhm ◽  
Young-Yeul Kang ◽  
Jung-Keun Oh ◽  
Sun-Kyoung Shin ◽  
...  

2017 ◽  
Vol 25 (21) ◽  
pp. 20430-20438 ◽  
Author(s):  
Thuy Chung Nguyen ◽  
Paripurnanda Loganathan ◽  
Tien Vinh Nguyen ◽  
Jaya Kandasamy ◽  
Ravi Naidu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5190
Author(s):  
Laura Boquera ◽  
David Pons ◽  
Ana Inés Fernández ◽  
Luisa F. Cabeza

Six supplementary cementitious materials (SCMs) were identified to be incorporated in concrete exposed to high-temperature cycling conditions within the thermal energy storage literature. The selected SCMs are bauxite, chamotte, ground granulated blast furnace slag, iron silicate, silica fume, and steel slag. A microstructural characterization was carried out through an optical microscope, X-ray diffraction analysis, and FT-IR. Also, a pozzolanic test was performed to study the reaction of SCMs silico-aluminous components. The formation of calcium silica hydrate was observed in all SCMs pozzolanic test. Steel slag, iron silicate, and ground granulated blast furnace slag required further milling to enhance cement reaction. Moreover, the tensile strength of three fibers (polypropylene, steel, and glass fibers) was tested after exposure to an alkalinity environment at ambient temperature during one and three months. Results show an alkaline environment entails a tensile strength decrease in polypropylene and steel fibers, leading to corrosion in the later ones.


Sign in / Sign up

Export Citation Format

Share Document