scholarly journals Based on the Multi Variable System Design and Parameter Tuning Method of PID Controller

2017 ◽  
Vol 10 (3) ◽  
pp. 1-14
Author(s):  
Li-Fei Deng ◽  
Yaowu Shi ◽  
Lan-Xiang Zhu ◽  
D. L. Yu ◽  
Rui Zhu
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yongli Zhang ◽  
Lijun Zhang ◽  
Zhiliang Dong

The optimization and tuning of parameters is very important for the performance of the PID controller. In this paper, a novel parameter tuning method based on the mind evolutionary algorithm (MEA) was presented. The MEA firstly transformed the problem solutions into the population individuals embodied by code and then divided the population into superior subpopulations and temporary subpopulations and used the similar taxis and dissimilation operations for searching the global optimal solution. In order to verify the control performance of the MEA, three classical functions and five typical industrial process control models were adopted for testing experiments. Experimental results indicated that the proposed approach was feasible and valid: the MEA with the superior design feature and parallel structure could memorize more evolutionary information, generate superior genes, and enhance the efficiency and effectiveness for searching global optimal parameters. In addition, the MEA-tuning method can be easily applied to real industrial practices and provides a novel and convenient solution for the optimization and tuning of the PID controller.


2012 ◽  
Vol 499 ◽  
pp. 469-473
Author(s):  
Yan Zhong Huo ◽  
Guo Ling Niu ◽  
Shi Jun Ma ◽  
Xu Du

As a control method, PID control is the most widely used in industrial processes. However, PID controller parameter tuning of the pros and cons of PID controller performance has been an important factor. Fuzzy control technology is an advanced intelligent control technology, because of its advanced features and easy implementation, it can develop rapidly. This paper describes the theory and method of fuzzy control to realize the dynamic PID controller parameters tuning approach to the PID controller to achieve the best control performance.


2014 ◽  
Vol 1037 ◽  
pp. 225-227
Author(s):  
Yin Ping Chen

PID control is the most common control method used in process control. The PID control parameters tuning methods are develop constantly. At present, in numerous tuning methods, there are mainly two methods applied better in the practical industrial process. One is based on pattern identification (based on rules); the other is based on relay feedback (based on model). They are collectively referred to as intelligent PID parameter tuning method. This paper studies on the PID parameter auto-tuning methods and introduces the results of the latest research on this subject. Finally, the development direction of auto-tuning PID controller was also prospected.


Author(s):  
Bin He ◽  
Tengyu Li ◽  
Jinglong Xiao

Abstract The control performance of the control system directly affects the running performance of the product. In order to solve the problem that the dynamics characteristics of mechanical systems are affected by the performance degradation of the controller, a digital twin-driven proportion integration differentiation (PID) controller tuning method for dynamics is proposed. In this paper, first, the structure and operation mechanism of the digital twin model for PID controller tuning are described. Using the advantages of virtual real mapping and data fusion of the digital twin model, combined with the online identification of the controlled object model, the problems of real-time feedback of an actual control effect of the controller and the unreal virtual model of the control system caused by time-varying working conditions are effectively solved, and the closed-loop self-tuning of PID controller is realized. At the same time, intelligent optimization algorithm is integrated to improve the efficiency and accuracy of PID controller parameter tuning. Second, the modeling method of the digital twin model is described from three aspects of physical prototyping, twin service system, and virtual prototyping. Finally, the controller tuning for gear transmission stability is taken as an example to verify the practicability of the proposed method.


2012 ◽  
Vol 152-154 ◽  
pp. 1133-1137
Author(s):  
Jian Hu Jiang ◽  
Chao Wu ◽  
Gang Zhang

In this paper, fuzzy self-tuning controller is introduced first. The fuzzy model is built according to the experience of PID parameter tuning with fuzzy set theory. Parameter tuning is achieved by use of fuzzy ratiocination and decision according to actual response, which is applied for control towards robot. Mathematical model of two-link robot has been built as well as its geometric and dynamical equations through coordinate transformation and matrix operation. Finally, fuzzy PD controller with self-tuning method is applied to realize control towards robots. Simulation in Matlab has been carried out whose result shows that the control method proposed in this paper has better performance than the traditional ones.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Pengzi Chu ◽  
Yi Yu ◽  
Danyang Dong ◽  
Hui Lin ◽  
Jianjun Yuan

Automatic train operation (ATO) system is one of the important components in advanced train operation control systems. Ideal controllers are expected for the automatic driving function of ATO systems. Aiming at the intelligence requirements of the systems, an NSGA-II-based parameter tuning method for the fuzzy immune PID (FI-PID) controller and a grey model GM(1,1)-based fuzzy grey immune PID (FGI-PID) controller were proposed. Taking a maglev train’s model as the control object and a velocity-time curve as the input, the feasibility of the parameter tuning method for the FI-PID controller and the applicability of the FI-PID controller and the FGI-PID controller for the ATO system were tested. The results showed that the optimized parameters were ideal, the two controllers all showed good performance on the indicators of traceability and comfort level, and the FGI-PID controller performed better than the FI-PID controller. The results exhibited the effectiveness of the proposed methods.


2010 ◽  
Vol 24 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Cuiyun Jin ◽  
Jianlin Wang ◽  
Jiangning Ma ◽  
Ying Wang

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 423
Author(s):  
Gun-Baek So

Although a controller is well-tuned for set-point tracking, it shows poor control results for load disturbance rejection and vice versa. In this paper, a modified two-degree-of-freedom (2-DOF) control framework to solve this problem is proposed, and an optimal tuning method for the pa-rameters of each proportional integral derivative (PID) controller is discussed. The unique feature of the proposed scheme is that a feedforward controller is embedded in the parallel control structure to improve set-point tracking performance. This feedforward controller and the standard PID con-troller are combined to create a new set-point weighted PID controller with a set-point weighting function. Therefore, in this study, two controllers are used: a set-point weighted PID controller for set-point tracking and a conventional PID controller for load disturbance rejection. The parameters included in the two controllers are tuned separately to improve set-point tracking and load dis-turbance rejection performances, respectively. Each controller is optimally tuned by genetic algo-rithm (GA) in terms of minimizing the IAE performance index, and what is special at this time is that it also tunes the set-point weighting parameter simultaneously. The simulation results performed on four virtual processes verify that the proposed method shows better performance in set-point tracking and load disturbance rejection than those of the other methods.


Sign in / Sign up

Export Citation Format

Share Document