Host plant interactions of a polyphagous herbivorous pest, Helicoverpa armigera, in relation to a primary host species

2007 ◽  
Author(s):  
◽  
Champa Nirupa Kumari Rajapakse
2021 ◽  
Vol 22 (11) ◽  
pp. 5941
Author(s):  
Abigail Ngugi-Dawit ◽  
Isaac Njaci ◽  
Thomas J.V. Higgins ◽  
Brett Williams ◽  
Sita R. Ghimire ◽  
...  

Pigeonpea [Cajanus cajan (L.) Millspaugh] is an economically important legume playing a crucial role in the semi-arid tropics. Pigeonpea is susceptible to Helicoverpa armigera (Hübner), which causes devastating yield losses. This pest is developing resistance to many commercially available insecticides. Therefore, crop wild relatives of pigeonpea, are being considered as potential sources of genes to expand the genetic base of cultivated pigeonpea to improve traits such as host plant resistance to pests and pathogens. Quantitative proteomic analysis was conducted using the tandem mass tag platform to identify differentially abundant proteins between IBS 3471 and ICPL 87 tolerant accession and susceptible variety to H. armigera, respectively. Leaf proteome were analysed at the vegetative and flowering/podding growth stages. H. armigera tolerance in IBS 3471 appeared to be related to enhanced defence responses, such as changes in secondary metabolite precursors, antioxidants, and the phenylpropanoid pathway. The development of larvae fed on an artificial diet with IBS 3471 lyophilised leaves showed similar inhibition with those fed on an artificial diet with quercetin concentrations with 32 mg/25 g of artificial diet. DAB staining (3,3’-diaminobenzidine) revealed a rapid accumulation of reactive oxygen species in IBS 3471. We conclude that IBS 3471 is an ideal candidate for improving the genetic base of cultivated pigeonpea, including traits for host plant resistance.


2016 ◽  
Vol 107 (2) ◽  
pp. 188-199 ◽  
Author(s):  
G.H. Baker ◽  
C.R. Tann

AbstractThe cotton bollworm, Helicoverpa armigera, is a major pest of many agricultural crops in several countries, including Australia. Transgenic cotton, expressing a single Bt toxin, was first used in the 1990s to control H. armigera and other lepidopteran pests. Landscape scale or greater pest suppression has been reported in some countries using this technology. However, a long-term, broad-scale pheromone trapping program for H. armigera in a mixed cropping region in eastern Australia caught more moths during the deployment of single Bt toxin cotton (Ingard®) (1996–2004) than in previous years. This response can be attributed, at least in part, to (1) a precautionary cap (30% of total cotton grown, by area) being applied to Ingard® to restrict the development of Bt resistance in the pest, and (2) during the Ingard® era, cotton production greatly increased (as did that of another host plant, sorghum) and H. armigera (in particular the 3rd and older generations) responded in concert with this increase in host plant availability. However, with the replacement of Ingard® with Bollgard II® cotton (containing two different Bt toxins) in 2005, and recovery of the cotton industry from prevailing drought, H. armigera failed to track increased host-plant supply and moth numbers decreased. Greater toxicity of the two gene product, introduction of no cap on Bt cotton proportion, and an increase in natural enemy abundance are suggested as the most likely mechanisms responsible for the suppression observed.


2012 ◽  
Vol 103 (2) ◽  
pp. 171-181 ◽  
Author(s):  
G.H. Baker ◽  
C.R. Tann

AbstractTransgenic (Bt) cotton dominates Australian cotton production systems. It is grown to control feeding damage by lepidopteran pests such as Helicoverpa armigera. The possibility that these moths might become resistant to Bt remains a threat. Consequently, refuge crops (with no Bt) must be grown with Bt cotton to produce large numbers of Bt-susceptible moths to reduce the risk of resistance developing. A key assumption of the refuge strategy, that moths from different host plant origins mate at random, remains untested. During the period of the study reported here, refuge crops included pigeon pea, conventional cotton (C3 plants), sorghum or maize (C4 plants). To identify the relative contributions made by these (and perhaps other) C3 and C4 plants to populations of H. armigera in cotton landscapes, we measured stable carbon isotopes (δ13C) within individual moths captured in the field. Overall, 53% of the moths were of C4 origin. In addition, we demonstrated, by comparing the stable isotope signatures of mating pairs of moths, that mating is indeed random amongst moths of different plant origins (i.e. C3 and C4). Stable nitrogen isotope signatures (δ15N) were recorded to further discriminate amongst host plant origins (e.g. legumes from non-legumes), but such measurements proved generally unsuitable. Since 2010, maize and sorghum are no longer used as dedicated refuges in Australia. However, these plants remain very common crops in cotton production regions, so their roles as ‘unstructured’ refuges seem likely to be significant.


1998 ◽  
Vol 46 (3) ◽  
pp. 291 ◽  
Author(s):  
Mustapha F. A. Jallow ◽  
Myron P. Zalucki

We examined the effect of age-specific fecundity, mated status, and egg load on host-plant selection by Helicoverpa armigera under laboratory conditions. The physiological state of a female moth (number of mature eggs produced) greatly influences her host-plant specificity and propensity to oviposit (oviposition motivation). Female moths were less discriminating against cowpea (a low-ranked host) relative to maize (a high-ranked host) as egg load increased. Similarly, increased egg load led to a greater propensity to oviposit on both cowpea and maize. Distribution of oviposition with age of mated females peaked shortly after mating and declined steadily thereafter until death. Most mated females (88%) carried only a single spermat-ophore, a few females (12%) contained two. The significance of these findings in relation to host-plant selection by H. armigera, and its management, are discussed.


Author(s):  
B.L. Jat ◽  
K.K. Dahiya ◽  
H.C. Sharma

Background: The legume pod borer, Helicoverpa armigera (Hübner), is one of the most damaging crop pests, including pigeonpea. Host plant resistance is a component of pest management and therefore, we standardize a nylon bag No-Choice Bioassay technique to screen for resistance to H. armigera under field conditions. Methods: Pigeonpea plants were infested with 24 h old 1, 2, 3, 4 and 5 larvae per plant inside the nylon bag. Observations were recorded on pod damage, larval survival, larval weight, pupation, adult emergence, and fecundity after 10 days. Result: Pigeonpea varieties AL-201, H03-41 and PAU-881 exhibited lower pod damage (15.89 to 19.77%) and larval weight (12.02 to 13.82 mg). The expression of resistance to H. armigera was associated with trichome density, pod wall thickness and higher amount of phenolic compounds and condensed tannins. Lower trichome density and thin pod walls and higher amounts of sugars rendered the varieties Paras, Manak and Pussa-992 more susceptible to H. armigera. Nylon bag assay can be used to screen and select pigeonpea cultivars for resistance to H. armigera.


Sign in / Sign up

Export Citation Format

Share Document