scholarly journals S889 Effects of Etoh on Human Intestinal Epithelial and Microvascular Endothelial Cells (HIMEC) in Patients With Inflammatory Bowel Disease: An in-vitro Exploration

2021 ◽  
Vol 116 (1) ◽  
pp. S418-S418
Author(s):  
Mohamed Tausif Siddiqui ◽  
Gail West ◽  
Gail Cresci
2020 ◽  
Vol 295 (13) ◽  
pp. 4237-4251 ◽  
Author(s):  
Jie Zhang ◽  
Min Xu ◽  
Weihua Zhou ◽  
Dejian Li ◽  
Hong Zhang ◽  
...  

Parkinson disease autosomal recessive, early onset 7 (PARK7 or DJ-1) is involved in multiple physiological processes and exerts anti-apoptotic effects on multiple cell types. Increased intestinal epithelial cell (IEC) apoptosis and excessive activation of the p53 signaling pathway is a hallmark of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). However, whether DJ-1 plays a role in colitis is unclear. To determine whether DJ-1 deficiency is involved in the p53 activation that results in IEC apoptosis in colitis, here we performed immunostaining, real-time PCR, and immunoblotting analyses to assess DJ-1 expression in human UC and CD samples. In the inflamed intestines of individuals with IBD, DJ-1 expression was decreased and negatively correlated with p53 expression. DJ-1 deficiency significantly aggravated colitis, evidenced by increased intestinal inflammation and exacerbated IEC apoptosis. Moreover, DJ-1 directly interacted with p53, and reduced DJ-1 levels increased p53 levels both in vivo and in vitro and were associated with decreased p53 degradation via the lysosomal pathway. We also induced experimental colitis with dextran sulfate sodium in mice and found that compared with DJ-1−/− mice, DJ-1−/−p53−/− mice have reduced apoptosis and inflammation and increased epithelial barrier integrity. Furthermore, pharmacological inhibition of p53 relieved inflammation in the DJ-1−/− mice. In conclusion, reduced DJ-1 expression promotes inflammation and IEC apoptosis via p53 in colitis, suggesting that the modulation of DJ-1 expression may be a potential therapeutic strategy for managing colitis.


Physiology ◽  
2018 ◽  
Vol 33 (5) ◽  
pp. 360-369 ◽  
Author(s):  
Gabriella Leung ◽  
Aleixo M. Muise

The incidence of inflammatory bowel disease (IBD) is increasing worldwide, most notably in young children. The development of disease is a combination of several factors, including genetics, environment, the microbiota, and immune system. Recently, next-generation sequencing has allowed for the identification of novel genetic causes for intestinal disease, including pediatric inflammatory bowel disease (IBD). These IBD genes can generally be grouped into genes causing either primary immunodeficiency or intestinal epithelial defects (the focus of this review). Most of these genes have been functionally validated with in vitro and/or animal models, and have been demonstrated to cause intestinal disease. Intestinal epithelial IBD genes are of particular interest since they are the least amenable to current therapies; therefore, further research is warranted to develop potential therapies. A number of cellular pathways are impacted with intestinal epithelial IBD genes, including intestinal epithelial cell adhesion and generation of reactive oxygen species. Here, we describe the currently known IBD risk alleles and monogenic causal intestinal epithelial genes, their putative roles in preserving intestinal epithelial cell homeostasis, and their implications for IBD pathophysiology.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S34-S35
Author(s):  
Terrence Roh ◽  
Ying Chen ◽  
Harry Paul ◽  
Chengchen Guo ◽  
David Kaplan

Abstract An in vitro model of intestine epithelium with an immune compartment was bioengineered to mimic immunologic responses seen in inflammatory bowel disease [1]. While aspects of intestinal immunity can be modeled in transwells and 2D culture systems, 3D tissue models improve physiological relevance by providing a 3D substrate which enable migration of macrophages towards the epithelium. An intestinal epithelium comprised of non-transformed human colon organoid cells and a subepithelial layer laden with monocyte-derived macrophages was bioengineered to mimic native intestinal mucosa cell organization using spongy silk scaffolds. Confluent epithelial monolayers with microvilli, a mucus layer, and infiltration of macrophages to the basal side of the epithelium were observed. Inflammation, induced by E. coli O111:B4 lipopolysaccharide and interferon γ resulted in morphology changes to the epithelium, resulting in ball-like structures, decreased epithelial coverage, and migration of macrophages to the epithelium. Analysis of cytokines present in the inflamed tissue model demonstrated significantly upregulated secretion of pro-inflammatory cytokines associated with active inflammatory bowel disease, including CXCL10, IL-1β, IL-6, MCP-2, and MIP-1β. The macrophage layer enhanced epithelial and biochemical responses to inflammatory stimuli, and this new tissue system may be useful to study and develop potential therapies for inflammatory bowel disease. References: 6 Roh, T.T., et al., 3D bioengineered tissue model of the large intestine to study inflammatory bowel disease. Biomaterials, 2019: p. 119517. 7 In, J., et al., Enterohemorrhagic Escherichia coli reduce mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cellular and molecular gastroenterology and hepatology, 2015. 2(1): p. 48–62.e3. 8 Chen, Y., et al., In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses. PLoS ONE, 2017. 12(11): p. e0187880. Colonoid and macrophage cultivation scheme in the 3D bilayer system. (A) Human monocytes were isolated from whole blood and human colonoids from large intestine biopsies were cultured according to established protocols [2]. (B) Cell suspensions of colonoids were seeded on the film surface on the inner silk scaffold and monocyte-derived macrophages were seeded throughout the porous outer silk scaffold using established protocols [3]. (C) The model is cultured for 3 weeks total with 2 weeks in High WNT media and 1 week in differentiation media based on established protocol. Colonoids are present in the model throughout the 3 week culture time. 2 sets of macrophages are added with the first set added after the first week of culture and the second set replacing the first set after the second week.


Sign in / Sign up

Export Citation Format

Share Document