migration of macrophages
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 14)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Y. H. Sun ◽  
G. Luxardi ◽  
G. Xu ◽  
K. Zhu ◽  
B. Reid ◽  
...  

Salmonella invades and disrupts gut epithelium integrity, creating an infection-generated electric field that can drive directional migration of macrophages, a process called galvanotaxis. Phagocytosis of bacteria reverses the direction of macrophage galvanotaxis, implicating a bioelectrical mechanism to initiate life-threatening disseminations. The force that drives direction reversal of macrophage galvanotaxis is not understood. One hypothesis is that Salmonella can alter the electrical properties of the macrophages by modifying host cell surface glycan composition, which is supported by the fact that cleavage of surface-exposed sialic acids with a bacterial neuraminidase severely impairs macrophage galvanotaxis, as well as phagocytosis. Here, we utilize N-glycan profiling by nanoLC-chip QTOF mass cytometry to characterize the bacterial neuraminidase-associated compositional shift of the macrophage glycocalyx, which revealed a decrease in sialylated and an increase in fucosylated and high mannose structures. The Salmonella nanH gene, encoding a putative neuraminidase, is required for invasion and internalization in a human colonic epithelial cell infection model. To determine whether NanH is required for the Salmonella infection-dependent direction reversal, we constructed and characterized a nanH deletion mutant and found that NanH is partially required for Salmonella infection in primary murine macrophages. However, compared to wild type Salmonella , infection with the nanH mutant only marginally reduced the cathode-oriented macrophage galvonotaxis, without canceling direction reversal. Together, these findings strongly suggest that while neuraminidase-mediated N-glycan modification impaired both macrophage phagocytosis and galvanotaxis, yet to be defined mechanisms other than NanH may play a more important role in bioelectrical control of macrophage trafficking, which potentially triggers dissemination.


Author(s):  
Tobias F. Fischer ◽  
Anne S. Czerniak ◽  
Tina Weiß ◽  
Clara T. Schoeder ◽  
Philipp Wolf ◽  
...  

AbstractTight regulation of cytokines is essential for the initiation and resolution of inflammation. Chemerin, a mediator of innate immunity, mainly acts on chemokine-like receptor 1 (CMKLR1) to induce the migration of macrophages and dendritic cells. The role of the second chemerin receptor, G protein-coupled receptor 1 (GPR1), is still unclear. Here we demonstrate that GPR1 shows ligand-induced arrestin3 recruitment and internalization. The chemerin C-terminus triggers this activation by folding into a loop structure, binding to aromatic residues in the extracellular loops of GPR1. While this overall binding mode is shared between GPR1 and CMKLR1, differences in their respective extracellular loop 2 allowed for the design of the first GPR1-selective peptide. However, our results suggest that ligand-induced arrestin recruitment is not the only mode of action of GPR1. This receptor also displays constitutive internalization, which allows GPR1 to internalize inactive peptides efficiently by an activation-independent pathway. Our results demonstrate that GPR1 takes a dual role in regulating chemerin activity: as a signaling receptor for arrestin-based signaling on one hand, and as a scavenging receptor with broader ligand specificity on the other. Graphic abstract


2021 ◽  
Author(s):  
Tobias F. Fischer ◽  
Anne S. Czerniak ◽  
Tina Weiß ◽  
Clara T. Schoeder ◽  
Philipp Wolf ◽  
...  

Abstract 1. Tight regulation of cytokines is essential for the initiation and resolution of inflammation. Chemerin, a mediator of innate immunity, mainly acts on chemokine-like receptor 1 (CMKLR1) to induce the migration of macrophages and dendritic cells. The role of the second chemerin receptor, G protein-coupled receptor 1 (GPR1), is still unclear. Here we demonstrate that GPR1 shows ligand-induced arrestin3 recruitment and internalization. The chemerin C-terminus triggers this activation by folding into a loop structure, binding to aromatic residues in the extracellular loops of GPR1. While this overall binding mode is shared between GPR1 and CMKLR1, differences in their respective extracellular loop 2 allowed for the design of the first GPR1-selective peptide. However, our results suggest that ligand-induced arrestin recruitment is not the only mode of action of GPR1. This receptor also displays constitutive internalization and recycling, which allows GPR1 to internalize inactive peptides efficiently by an activation-independent pathway. Our results demonstrate that GPR1 takes a dual role in regulating chemerin activity: As a signaling receptor for arrestin-based signaling on one hand, and as a scavenging receptor with broader ligand specificity on the other.


2020 ◽  
Vol 8 (12) ◽  
pp. 2039
Author(s):  
Corentin Dumortier ◽  
Rogatien Charlet ◽  
Ali Bettaieb ◽  
Samir Jawhara

Deregulation of the dynamic crosstalk between the gut microbiota, intestinal epithelial cells, and immune cells is critically involved in the development of inflammatory bowel disease and the overgrowth of opportunistic pathogens, including the human opportunistic fungus Candida albicans. In the present study, we assessed the effect of N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89), a protein kinase A inhibitor, on the migration of macrophages to C. albicans through dextran sulphate sodium (DSS)-challenged Caco-2 cells. We also investigated the impact of H89 on intestinal inflammation and C. albicans clearance from the gut, and determined the diversity of the gut microbiota in a murine model of DSS-induced colitis. H89 reduced the migration of macrophages to C. albicans through DSS-challenged Caco-2 cells. In addition, H89 decreased C. albicans viability and diminished the expression of pro-inflammatory cytokines and innate immune receptors in macrophages and colonic epithelial Caco-2 cells. In mice with DSS-induced colitis, H89 attenuated the clinical and histological scores of inflammation and promoted the elimination of C. albicans from the gut. H89 administration to mice decreased the overgrowth of Escherichia coli and Enterococcus faecalis populations while Lactobacillus johnsonii populations increased significantly. Overall, H89 reduced intestinal inflammation and promoted the elimination of C. albicans from the gut.


2020 ◽  
Vol 101 ◽  
pp. 139
Author(s):  
C. Yi Ying ◽  
T. Grace Min Yi ◽  
J. Vadivelu ◽  
L. Chung Yeng ◽  
W. Won Fen

2020 ◽  
Vol 104 (S3) ◽  
pp. S567-S567
Author(s):  
Taisuke Matsuoka ◽  
Gumpei Yoshimatsu ◽  
Tomoko Tanaka ◽  
Ryo Kawakami ◽  
Teppei Yamada ◽  
...  

2020 ◽  
Vol 48 (6) ◽  
pp. 030006052092606
Author(s):  
Hong Chen ◽  
Jianfeng Du ◽  
Siying Zhang ◽  
Hao Tong ◽  
Man Zhang

Objectives Migration of macrophages and atherosclerosis result in various diseases, including coronary heart disease. This study aimed to clarify the roles that ghrelin and Rho-associated coiled-coil-containing protein kinase 2 (ROCK2) play in migration of macrophages under chronic intermittent hypoxia (CIH). Methods A rat model of CIH was constructed and changes in ghrelin and ROCK2 protein expression were measured by western blot assay. The migratory ability of macrophages was determined by the transwell assay. Hematoxylin and eosin staining was applied to detect the changes in intima-media thickness. Results We found that CIH enhanced migration of macrophages, and this effect was attenuated by exogenous ghrelin. Additionally, the facilitative effect of CIH on migration of macrophages was strengthened or decreased by upregulation or downregulation of ROCK2, respectively. This phenomenon indicated that ROCK2 was involved in CIH-induced migration in macrophages. Furthermore, western blot and transwell assays showed that ghrelin inhibited CIH-induced migration via ROCK2 suppression in macrophages. Conclusions In summary, the present study shows that ghrelin inhibits CIH-induced migration via ROCK2 suppression in macrophages. Our research may help lead to identifying a new molecular mechanism for targeted therapy of atherosclerosis and its associated coronary artery diseases under intermittent hypoxia.


2020 ◽  
Vol 6 (7) ◽  
pp. 1643-1649
Author(s):  
Maria Inês Rocha ◽  
Filipa Dias ◽  
Mariana Resende ◽  
Mafalda Sousa ◽  
Margarida Duarte ◽  
...  

2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S34-S35
Author(s):  
Terrence Roh ◽  
Ying Chen ◽  
Harry Paul ◽  
Chengchen Guo ◽  
David Kaplan

Abstract An in vitro model of intestine epithelium with an immune compartment was bioengineered to mimic immunologic responses seen in inflammatory bowel disease [1]. While aspects of intestinal immunity can be modeled in transwells and 2D culture systems, 3D tissue models improve physiological relevance by providing a 3D substrate which enable migration of macrophages towards the epithelium. An intestinal epithelium comprised of non-transformed human colon organoid cells and a subepithelial layer laden with monocyte-derived macrophages was bioengineered to mimic native intestinal mucosa cell organization using spongy silk scaffolds. Confluent epithelial monolayers with microvilli, a mucus layer, and infiltration of macrophages to the basal side of the epithelium were observed. Inflammation, induced by E. coli O111:B4 lipopolysaccharide and interferon γ resulted in morphology changes to the epithelium, resulting in ball-like structures, decreased epithelial coverage, and migration of macrophages to the epithelium. Analysis of cytokines present in the inflamed tissue model demonstrated significantly upregulated secretion of pro-inflammatory cytokines associated with active inflammatory bowel disease, including CXCL10, IL-1β, IL-6, MCP-2, and MIP-1β. The macrophage layer enhanced epithelial and biochemical responses to inflammatory stimuli, and this new tissue system may be useful to study and develop potential therapies for inflammatory bowel disease. References: 6 Roh, T.T., et al., 3D bioengineered tissue model of the large intestine to study inflammatory bowel disease. Biomaterials, 2019: p. 119517. 7 In, J., et al., Enterohemorrhagic Escherichia coli reduce mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cellular and molecular gastroenterology and hepatology, 2015. 2(1): p. 48–62.e3. 8 Chen, Y., et al., In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses. PLoS ONE, 2017. 12(11): p. e0187880. Colonoid and macrophage cultivation scheme in the 3D bilayer system. (A) Human monocytes were isolated from whole blood and human colonoids from large intestine biopsies were cultured according to established protocols [2]. (B) Cell suspensions of colonoids were seeded on the film surface on the inner silk scaffold and monocyte-derived macrophages were seeded throughout the porous outer silk scaffold using established protocols [3]. (C) The model is cultured for 3 weeks total with 2 weeks in High WNT media and 1 week in differentiation media based on established protocol. Colonoids are present in the model throughout the 3 week culture time. 2 sets of macrophages are added with the first set added after the first week of culture and the second set replacing the first set after the second week.


2020 ◽  
Vol 18 ◽  
pp. 205873922091749
Author(s):  
Xuan Huang ◽  
Fang Gong ◽  
Zhixian Lu ◽  
Jie Zhu ◽  
Qun Yu

This study sought to investigate the role of miR-206 in polymyositis/dermatomyositis (PM/DM) development. Transwell and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay were performed to investigate cell migration and proliferation. Real-time polymerase chain reaction (PCR) analysis was used to determine the expression of miR-206, interleukin-17A (IL-17A), IL-17 receptor A (IL-17RA), and regenerating islet-derived protein 3-alpha (REG3A). Significantly, miR-206 mimics decreased macrophage migration and proliferation, while miR-206 inhibitors exhibited the opposite effects. Indeed, elevating IL-17RA levels resulted in increased REG3A expression, which was inhibited by IL-17RA siRNA. Besides, miR-206 mimics decreased IL-17A and REG3A expressions, but miR-206 inhibitors showed opposite effects. Moreover, miR-206 expression in PM/DM patients was significantly reduced compared with the healthy controls, while IL-17A and REG3A expressions substantially increased among PM/DM patients. These findings suggested that downregulation of miR-206 increased the migration and proliferation of macrophages via IL-17A/REG3A signaling pathway, which could promote the inflammatory infiltration in PM/DM.


Sign in / Sign up

Export Citation Format

Share Document