scholarly journals An Aerodynamic Method for the Preliminary Design of Horizontal Axis Wind Turbines

10.14311/18 ◽  
2000 ◽  
Vol 40 (1) ◽  
Author(s):  
X. Munduate ◽  
F. N. Coton

The present paper describes a method developed to assist in the preliminary aerodynamic design of wind turbines by identifying regions of the rotor disk which are dominated by unsteady and/or three-dimensional effects. The technique is based on a blade element/momentum predictor that has been extended to consider yawed flow and tower shadow effects. In addition, the method tracks temporal changes in blade incidence to identify regions of the rotor disk which are susceptible to dynamic stall. It also monitors and assesses the severity of three-dimensional stall delay and the extent to which this interacts with the regions of unsteadiness. In the paper the capability of the method will be demonstrated by application to the specific test case of the U. S. National Renewable Energy Laboratories (NREL) Combined Experiment turbine.

2020 ◽  
Author(s):  
Raffaele Peraro ◽  
Luca Menegozzo ◽  
Andrea Dal Monte ◽  
Ernesto Benini

Abstract The present work aims to present two different approaches to model the unsteady aerodynamics of horizontal-axis wind turbines (HAWTs). A complete and extensive comparison has been established between the results obtained using a low-fidelity calculation tool, as the Blade Element Momentum (BEM), and a high-fidelity technique, as the Computational Fluid Dynamics (CFD). Regarding the first calculation strategy, an accurate revision in polar diagrams calculation and the implementation of yaw and dynamic stall routines have endowed the BEM code to predict the machine performance under unsteady flow conditions. In order to achieve an accurate validation, the proposed BEM solver has been tested on AOC 15/50 and NREL Phase VI wind turbines. Referring to CFD techniques, a three-dimensional unsteady model has been improved to study the aerodynamic behaviour of the machine in case of yawed incoming wind.


1995 ◽  
Vol 117 (3) ◽  
pp. 200-204 ◽  
Author(s):  
K. Pierce ◽  
A. C. Hansen

The Beddoes-Leishman model for unsteady aerodynamics and dynamic stall has recently been implemented in YawDyn, a rotor analysis code developed at the University of Utah for the study of yaw loads and motions of horizontal axis wind turbines. This paper presents results obtained from validation efforts for the Beddoes model. Comparisons of predicted aerodynamic force coefficients with wind tunnel data and data from the combined experiment rotor are presented. Also, yaw motion comparisons with the combined experiment rotor are presented. In general the comparisons with the measured data are good, indicating that the model is appropriate for the conditions encountered by wind turbines.


2020 ◽  
Author(s):  
Hussein Al-Qarishey ◽  
Robert W. Fletcher

Abstract Wind turbines can create turbulence and downstream wakes which can introduce generation losses of downstream impacted turbines. These downstream turbine-induced losses are due to two different conditions. The first is from power-producing rotating blades of upstream wind turbines agitating the subsequent downstream wind in a cork-screw like manner. The second is from non-rotating, non-operational, non-power-generating wind turbines. These non-operating turbines may be under scheduled service shutdown, or rendered non-functional due to longer-term or permanent mechanical problems. In this work CFD was used to study downstream turbulence and wakes of a utility-scale, non-operational three-blade horizontal axis wind turbines (HAWT). A flow field was constructed using an unstructured grid around a HAWT (rotor hub elevation of 80 meters and a blade length of 40 meters). Various wind velocities were studied up to 25 meters per second. Incompressible flow was used to assess downstream turbulence using a three-dimensional steady state and unsteady state SST k-ω (two equation) turbulence model. Different blade positions with respect to angle of attack (α) were studied, with a 4 degree angle of attack reported here. Pressures and velocities for distances of 100 meters in front and 500 meters downstream from the wind turbine are reported.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7653
Author(s):  
David Wood

This paper considers the effect of wake expansion on the finite blade functions in blade element/momentum theory for horizontal-axis wind turbines. For any velocity component, the function is the ratio of the streamtube average to that at the blade elements. In most cases, the functions are set by the trailing vorticity only and Prandtl’s tip loss factor can be a reasonable approximation to the axial and circumferential functions at sufficiently high tip speed ratio. Nevertheless, important cases like coned or swept rotors or shrouded turbines involve more complex blade functions than provided by the tip loss factor or its recent modifications. Even in the presence of significant wake expansion, the functions derived from the exact solution for the flow due to constant pitch and radius helical vortices provide accurate estimates for the axial and circumferential blade functions. Modifying the vortex pitch in response to the expansion improves the accuracy of the latter. The modified functions are more accurate than the tip loss factor for the test cases at high tip speed ratio that are studied here. The radial velocity is important for expanding flow as it has the magnitude of the induced axial velocity near the edge of the rotor. It is shown that the resulting angle of the flow to the axial direction is small even with significant expansion, as long is the tip speed ratio is high. This means that blade element theory does not have account for the effective blade sweep due to the radial velocity. Further, the circumferential variation of the radial velocity is lower than of the other components.


2021 ◽  
Author(s):  
Mohammad Sadman Sakib ◽  
D. Todd Griffith

Abstract. A good understanding of aerodynamic loading is essential in the design of vertical axis wind turbines (VAWTs) to properly capture design loads and to estimate the power production. This paper presents a comprehensive aerodynamic design study for a 5 MW Darrieus offshore VAWT in the context of multi-megawatt floating VAWTs. This study systematically analyzes the effect of different, important design variables including the number of blades (N), aspect ratio (AR) and blade tapering in a comprehensive loads analysis of both the parked and operating aerodynamic loads including turbine power performance analysis. Number of blades (N) is studied for 2- and 3-bladed turbines, aspect ratio is defined as ratio of rotor height (H) and rotor diameter (D) and studied for values from 0.5 to 1.5, and blade tapering is applied by means of adding solidity to the blades towards blade root ends, which affects aerodynamic and structural performance. Analyses were carried out using a three-dimensional vortex model named CACTUS (Code for Axial and Crossflow TUrbine Simulation) to evaluate both instantaneous azimuthal parameters as well as integral parameters, such as loads (thrust force, lateral force, and torque loading) and power. Parked loading is a major concern for VAWTs, thus this work presents a broad evaluation of parked loads for the design variables noted above. This study also illustrates that during the operation of a turbine, lateral loads are on par with thrust loads, which will significantly affect the structural sizing of rotor and platform & mooring components.


2003 ◽  
Vol 2003.2 (0) ◽  
pp. 97-98
Author(s):  
Yutaka HARA ◽  
Tsutomu HAYASHI ◽  
Masatoshi KAJIWARA ◽  
Toshimasa MATSUOKA

2013 ◽  
Vol 58 (3) ◽  
pp. 1-9 ◽  
Author(s):  
A. D. Gardner ◽  
K. Richter

A computational investigation of the effect of rotation on two-dimensional (2D) deep dynamic stall has been undertaken, showing that the effect of rotation is to reduce the severity of the pitching moment peak and cause earlier reattachment of the flow. A generic single blade rotor geometry was investigated, which had a pitching oscillation around the quarter-chord axis while in hover, causing angle-driven dynamic stall. The results at the midpoint of the blade have the same Mach number (0.31), Reynolds number (1.15 × 106), and pitching motion (α = 13° ± 7°) as a dynamic stall test case for which significant experimental wind tunnel data and 2D computations exist. The rotating blade is compared with 2D computations and computations using the same blade without rotation at Mach 0.31 and with the same pitching motion. All test cases involve geometries propagating into undisturbed flow with no downwash. The three-dimensional (3D) grid computed without rotation had lower lift at the reference section than for a 2D computation with the same geometric angle of attack time history, and the lift overshoot classically observed for Spalart–Allmaras turbulence models during 2D dynamic stall was significantly reduced in the 3D case. Rotation reduced the strength of the dynamic stall vortex, which reduced the accompanying pitching moment peak by 25%.


Author(s):  
Camille Castells ◽  
François Richez ◽  
Michel Costes

Recently, fluid–structure coupling simulations of helicopter rotors in high-thrust forward flight suggested that dynamic stall might be triggered by the blade–vortex interaction. However, no clear evidence of a correlation between dynamic stall and blade–vortex interaction has yet been given. We propose in this paper a simplified two-dimensional numerical model that can be used to indicate the role that the blade–vortex interaction plays in dynamic stall onset for different flight conditions. In this model, the rotor blade element is considered in pitching oscillation motion with a nonuniform translation, and a simplified vortex model can be introduced or not in the simulation to highlight the effect of blade–vortex interaction. All flow parameters of this simplified model are deduced from data provided by previous three-dimensional high-fidelity fluid–structure simulations. The method is used for validation and analysis of three flight conditions. The results show that, for the two cases with moderate advance ratio, the dynamic stall event is only triggered when a blade–vortex interaction occurs in the stall region. For the high-speed test case, the dynamic stall event seems to be only triggered by the very high angle of attack due to the motion of the blade.


Sign in / Sign up

Export Citation Format

Share Document