scholarly journals Neural Network Based Identification of Material Model Parameters to Capture Experimental Load-deflection Curve

10.14311/636 ◽  
2004 ◽  
Vol 44 (5-6) ◽  
Author(s):  
D. Novák ◽  
D. Lehký

A new approach is presented for identifying material model parameters. The approach is based on coupling stochastic nonlinear analysis and an artificial neural network. The model parameters play the role of random variables. The Monte Carlo type simulation method is used for training the neural network. The feasibility of the presented approach is demonstrated using examples of high performance concrete for prestressed railway sleepers and an example of a shear wall failure. 

2018 ◽  
pp. 77-83

Modelización del ensayo de resistencia a compresión del concreto de alta resistencia mediante una red neuronal artificial. Obtención de la incertidumbre del resultado Modeling the resistance to compression of high performance concrete test by means of an artificial neural network. Obtaining the uncertainty of the results Francisco García Fernández1, Ana Torre Carrillo2, Isabel Moromi Nakata2, Pedro Espinoza Haro3 y Luis Acuña Pinaud3 1 Dpto. Sistemas y Recursos Naturales. Universidad Politécnica de Madrid. Ciudad Universitaria S/N, 28040 Madrid, España 2 Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería. Av. Túpac Amaru, 210. Lima 25, Perú 3 Facultad de Ingeniería Industrial y de Sistemas. Universidad Nacional de Ingeniería. Av. Túpac Amaru, 210. Lima 25, Perú DOI: https://doi.org/10.33017/RevECIPeru2015.0012/  Resumen En los últimos años las ANN han tenido un gran desarrollo en el control de procesos industriales debido principalmente a su capacidad de modelizar relaciones complejas, que los sistemas tradicionales no han sido capaces de hacer, y predecir satisfactoriamente si las características de un producto se adecuan o no a las especificaciones correspondientes. Estas estructuras han sido ampliamente utilizadas en la caracterización de otros materiales como cemento, hormigón, algunos metales o la madera. El perceptrón multicapa, una de las redes neuronales artificiales más populares, se ha convertido en los últimos tiempos en una potente herramienta de modelización en numerosos campos que van desde las finanzas, a la ingeniería o la medicina. Esta herramienta consigue mejorar sustancialmente cualquier modelo previo propuesto para modelizar cualquier sistema independientemente de la naturaleza de éste, con la ventaja añadida de que no necesitan ninguna suposición previa sobre la estructura de los datos Sin embargo, la red sólo proporciona el valor de la salida sin ninguna información acerca de su precisión. La obtención de la incertidumbre de salida es importante, no sólo porque proporciona un intervalo de confianza sobre el valor de salida, sino porque da una idea de la calidad del método de medida. Esta incertidumbre procede de dos fuentes, por un lado el ruido inherente a los valores de entrada y por otro la simplificación del fenómeno que todo modelo matemático supone. En este trabajo se va a desarrollar una nueva metodología para obtener tanto la incertidumbre como los intervalos de confianza de la salida de un modelo específico de red neuronal, el perceptrón multicapa, basándose en el método de simulación de Montecarlo especificado en Suplemento 1 de la GUM para posteriormente aplicarlo a la modelizacion del ensayo de resistencia a compression del concreto. Descriptores: Concreto de alta resistencia, red neuronal artificial, resistencia a compresión, incertidumbre, Método de Monte Carlo Abstract Major advances have been made with the use of ANNs in recent years in industrial process control, mainly because they are capable of modeling complex relations, unlike conventional systems, and can adequately predict whether or not the characteristics of a product are in line with specifications. They have been widely used to characterize other materials such as cement, concrete, certain metals or wood. The multilayer perceptron, one of the most popular artificial neural networks, has become a powerful modeling tool in numerous fields, ranging from finances to engineering and medicine. This tool is capable of considerably improving on all previous models proposed for modeling any system, regardless of its nature, with the added advantage that no prior assumption on the structure of the data is necessary. However, the network provides only the output value, with no information about its accuracy. Obtaining the output uncertainty is important, not only because it provides a coverage interval for the output value, but also because it indicates the quality of the measuring method. This uncertainty comes from two sources: firstly, the inherent uncertainty in the input data, and secondly, the simplification of the phenomenon involved in any mathematical model. This study develops a new methodology for obtaining both the output uncertainty and coverage intervals of a specific neural network model - the multilayer perceptron - based on the Monte Carlo simulation method indicated in Supplement 1 to the Guide to the Expression of Uncertainty in Measurement (GUM), in order to use it when modelling the test of resistance to compression of concrete. Keywords: High performance concrete, artificial neural network, resistance to compression, uncertainty, Monte Carlo method.


2013 ◽  
Vol 347-350 ◽  
pp. 2156-2159
Author(s):  
Jian Hu ◽  
Fan Jun Hu

This paper discusses the neural network application for the information processing in the netted radar tracking systems compared with the problems of the conventional radar information processing. And then test the neural network using simulation method. The simulation result shows that the neural network method can perfectly solve the target tracking problems in the netted radar systems.


2012 ◽  
Vol 165 ◽  
pp. 93-97
Author(s):  
Nagur Aziz Kamal Bashah ◽  
Ahmad Zakaria ◽  
Khairul Za’im Kamarulzaman ◽  
Achmed Mobin ◽  
Mohd Safuan Mohd Abdul Lazat ◽  
...  

The use of High Strength Steels (HSS) for automotive parts improves car performance in terms of structural strength and weight reduction. However it poses major challenges to manufacturing since HSS is prone to springback. Springback causes deviation in part geometry from its intended design thus giving problem to its subsequent assembly process. In this paper, three models for predicting springback were evaluated. First model is based on the Multiple Regression (MR) technique. Second model utilized Hill Orthotropic constitutive material model and the last model employed a neural network predictive model. All the models were evaluated by using tool surface and stamped part historical data that are obtained from three selected springback prone automotive BIW parts representing three different levels of springback severity namely high, medium and small. The results on the low springback part show that the neural network model outperforms the other approaches.


2013 ◽  
Vol 651 ◽  
pp. 986-989
Author(s):  
Chin Ming Kao ◽  
Li Chen ◽  
Chang Huan Kou ◽  
Shih Wei Ma

This paper proposes the back-propagation neural network (BPN) and applies it to estimate the slump of high-performance concrete (HPC). It is known that HPC is a highly complex material whose behaviour is difficult to model, especially for slump. To estimate the slump, it is a nonlinear function of the content of all concrete ingredients, including cement, fly ash, blast furnace slag, water, superplasticizer, and coarse and fine aggregate. Therefore, slump estimation is set as a function of the content of these seven concrete ingredients and additional four important ratios. The results show that BPN obtains a more accurate mathematical equation through learning procedures which outperforms the traditional multiple linear regression analysis (RA), with lower estimating errors for predicting the HPC slump.


1994 ◽  
Vol 370 ◽  
Author(s):  
D.M. Roy ◽  
W. Jiang

AbstractThere is a strong motivation to study the interfacial properties of concrete composites because the interfacial region is often the phase where fracture first develops. The aim of this study is to understand phenomena which are unique at high-performance concrete composite interfaces, and how these influence the bulk properties of a concrete composite. Since processes at interfaces must be considered over a range of scales varying from the atomic to the macroscopic, multidisciplinary research approaches are desirable. Model cement/rock (aggregate) and matrix/fiber interaction experiments were carried out. Morphology and microstructure of interfacial regions among mortar/rock, and fiber/matrix were examined utilizing SEM. Computer image analysis performed along a perpendicular to the interface revealed compositional and physical irregularities. The variations in the volume of pores adjacent to interface zones are documented and supported by microscopic observation. The influences of interfacial properties on concrete composite strength and durability are discussed, and influences of fibers on the fracture and fracture resistance behavior are also discussed. Analyses of debonding along interfaces are used to define the role of debonding in fiber-reinforced concrete composites.


Sign in / Sign up

Export Citation Format

Share Document