scholarly journals Identification of Nonlinear Systems: Volterra Series Simplification

10.14311/976 ◽  
2007 ◽  
Vol 47 (4-5) ◽  
Author(s):  
A. Novák

Traditional measurement of multimedia systems, e.g. linear impulse response and transfer function, are sufficient but not faultless. For these methods the pure linear system is considered and nonlinearities, which are usually included in real systems, are disregarded. One of the ways to describe and analyze a nonlinear system is by using Volterra Series representation. However, this representation uses an enormous number of coefficients. In this work a simplification of this method is proposed and an experiment with an audio amplifier is shown. 

1980 ◽  
Vol 3 (3) ◽  
pp. 535-547 ◽  
Author(s):  
Sudhangshu B. Karmakar

This paper presents a method of the determination of the steady state response for a class of nonlinear systems. The response of a nonlinear system to a given input is first obtained in the form of a series solution in the multidimensional frequency domain. Conditions are then determined for which this series solution will converge. The conversion from multidimensions to a single dimension is then made by the method of association of variables, and thus an equivalent linear model of the nonlinear system is obtained. The steady state response is then found by any technique employed with linear system.


Author(s):  
Yun-Peng Zhu ◽  
Z. Q. Lang ◽  
Yu-Zhu Guo

AbstractIn engineering practice, a nonlinear system stable about several equilibria is often studied by linearizing the system over a small range of operation around each of these equilibria, and allowing the study of the system using linear system methods. Theoretically, for operations beyond a small range but still within the stable regime of an equilibrium, the system behaves nonlinearly, and can be described and investigated using the Volterra series approach. However, there is still no available approach that can systematically transform the model of a nonlinear system into a form that can be studied over the whole stable regime about an equilibrium so as to facilitate the system study using the Volterra series approach. This transformation is, in the present study, referred to as nonlinear model standardization, which is the extension of the well-known concept of linearization to the nonlinear case. In this paper, a novel approach to nonlinear model standardization is proposed for nonlinear systems that can be described by a Nonlinear AutoRegressive model with eXogeneous input (NARX) or a nonlinear differential equation (NDE) model. The proposed approach is then used in three case studies covering the applications in nonlinear system analysis, nonlinear system design, and nonlinearity compensation, respectively, demonstrating the significance of the proposed nonlinear model standardization in a wide range of engineering practices.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Wenbai Li ◽  
Huxiong Li

The reduced-order filtering problem for a class of discrete-time smooth nonlinear systems subject to multiple sensor faults is studied. It is well known that a smooth complex nonlinear system can be approximated by a Takagi-Sugeno fuzzy linear system with finite number of subsystems. In this work, firstly, the discrete-time smooth nonlinear system is transferred into a Takagi-Sugeno fuzzy linear system with finite number of subsystems. Secondly, a filter with the reduced order of the original system is proposed to be designed. Different from the traditional assumption in which the measurement of the output is ideal, the measurement of the output is subject to sensor faults which are described via Bernoulli processes. By using the augmentation technique, a stochastic Takagi-Sugeno filtering error system is obtained. For the stochastic filtering error system, the exponential stability and the energy-to-peak performance are investigated. Sufficient conditions which can guarantee the exponential stability and thel2−l∞performance are obtained. Then, with the proposed conditions, the design procedure of the filter for the nonlinear system is proposed. Finally, a numerical example is used to show the effectiveness of the proposed design methodology.


Author(s):  
Penghui Wu ◽  
Yan Zhao ◽  
Xianghong Xu

AbstractA consequence of nonlinearities is a multi-harmonic response via a mono-harmonic excitation. A similar phenomenon also exists in random vibration. The power spectral density (PSD) analysis of random vibration for nonlinear systems is studied in this paper. The analytical formulation of output PSD subject to the zero-mean Gaussian random load is deduced by using the Volterra series expansion and the conception of generalized frequency response function (GFRF). For a class of nonlinear systems, the growing exponential method is used to determine the first 3rd-order GFRFs. The proposed approach is used to achieve the nonlinear system’s output PSD under a narrow-band stationary random input. The relationship between the peak of PSD and the parameters of the nonlinear system is discussed. By using the proposed method, the nonlinear characteristics of multi-band output via single-band input can be well predicted. The results reveal that changing nonlinear system parameters gives a one-of-a-kind change of the system’s output PSD. This paper provides a method for the research of random vibration prediction and control in real-world nonlinear systems.


1988 ◽  
Vol 55 (3) ◽  
pp. 702-705 ◽  
Author(s):  
Y. K. Lin ◽  
Guoqiang Cai

A systematic procedure is developed to obtain the stationary probability density for the response of a nonlinear system under parametric and external excitations of Gaussian white noises. The procedure is devised by separating the circulatory portion of the probability flow from the noncirculatory flow, thus obtaining two sets of equations that must be satisfied by the probability potential. It is shown that these equations are identical to two of the conditions established previously under the assumption of detailed balance; therefore, one remaining condition for detailed balance is superfluous. Three examples are given for illustration, one of which is capable of exhibiting limit cycle and bifurcation behaviors, while another is selected to show that two different systems under two differents sets of excitations may result in the same probability distribution for their responses.


2012 ◽  
Vol 2012 ◽  
pp. 1-22
Author(s):  
Qinming Liu ◽  
Ming Dong

Health management for a complex nonlinear system is becoming more important for condition-based maintenance and minimizing the related risks and costs over its entire life. However, a complex nonlinear system often operates under dynamically operational and environmental conditions, and it subjects to high levels of uncertainty and unpredictability so that effective methods for online health management are still few now. This paper combines hidden semi-Markov model (HSMM) with sequential Monte Carlo (SMC) methods. HSMM is used to obtain the transition probabilities among health states and health state durations of a complex nonlinear system, while the SMC method is adopted to decrease the computational and space complexity, and describe the probability relationships between multiple health states and monitored observations of a complex nonlinear system. This paper proposes a novel method of multisteps ahead health recognition based on joint probability distribution for health management of a complex nonlinear system. Moreover, a new online health prognostic method is developed. A real case study is used to demonstrate the implementation and potential applications of the proposed methods for online health management of complex nonlinear systems.


Sign in / Sign up

Export Citation Format

Share Document