scholarly journals COVARIANT INTEGRAL QUANTIZATIONS AND THEIR APPLICATIONS TO QUANTUM COSMOLOGY

2016 ◽  
Vol 56 (3) ◽  
pp. 173 ◽  
Author(s):  
Jean-Pierre Gazeau

We present a general formalism for giving a measure space paired with a separable Hilbert space a quantum version based on a normalized positive operator-valued measure. The latter are built from families of density operators labeled by points of the measure space. We especially focus on group representation and probabilistic aspects of these constructions. Simple phase space examples illustrate the procedure: plane (Weyl-Heisenberg symmetry), half-plane (affine symmetry). Interesting applications to quantum cosmology (“smooth bouncing”) for Friedmann-Robertson-Walker metric are presented and those for Bianchi I and IX models are mentioned.

1968 ◽  
Vol 32 ◽  
pp. 141-153 ◽  
Author(s):  
Masasi Kowada

It is an important problem to determine the spectral type of automorphisms or flows on a probability measure space. We shall deal with a unitary operator U and a 1-parameter group of unitary operators {Ut} on a separable Hilbert space H, and discuss their spectral types, although U and {Ut} are not necessarily supposed to be derived from an automorphism or a flow respectively.


1977 ◽  
Vol 24 (2) ◽  
pp. 129-138 ◽  
Author(s):  
R. J. Fleming ◽  
J. E. Jamison

AbstractLet Lp(Ω, K) denote the Banach space of weakly measurable functions F defined on a finite measure space and taking values in a separable Hilbert space K for which ∥ F ∥p = ( ∫ | F(ω) |p)1/p < + ∞. The bounded Hermitian operators on Lp(Ω, K) (in the sense of Lumer) are shown to be of the form , where B(ω) is a uniformly bounded Hermitian operator valued function on K. This extends the result known for classical Lp spaces. Further, this characterization is utilized to obtain a new proof of Cambern's theorem describing the surjective isometries of Lp(Ω, K). In addition, it is shown that every adjoint abelian operator on Lp(Ω, K) is scalar.


2016 ◽  
Vol 31 (10) ◽  
pp. 1650047
Author(s):  
F. Darabi ◽  
A. Parsiya ◽  
K. Atazadeh

We consider the nonminimally kinetic coupled version of DGP brane model, where the kinetic term of the scalar field is coupled to the metric and Einstein tensor on the brane by a coupling constant [Formula: see text]. We obtain the corresponding field equations, using the Friedmann–Robertson–Walker metric and the perfect fluid, and study the inflationary scenario to confront the numerical analysis of six typical scalar field potentials with the current observational results. We find that among the suggested potentials and coupling constants, subject to the e-folding [Formula: see text], the potentials [Formula: see text], [Formula: see text] and [Formula: see text] provide the best fits with both Planck+WP+highL data and Planck+WP+highL+BICEP2 data.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Li-Fang Li ◽  
Jian-Yang Zhu

Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.


2019 ◽  
Vol 97 (10) ◽  
pp. 1083-1095 ◽  
Author(s):  
José Antonio Belinchón ◽  
Rafael Uribe

We study how the constants G and Λ may vary in four different theoretical models: general relativity with time-varying constants (Y.-K. Lau. Aust. J. Phys. 38, 547 (1985). doi: 10.1071/PH850547 ), the model proposed by Lu et al. (Phys Rev D, 89, 063526 (2014). doi: 10.1103/PhysRevD.89.063526 ), the model proposed by Bonanno et al. (Class. Quant. Grav. 24, 1443 (2007). doi: 10.1088/0264-9381/24/6/005 ), and the Brans–Dicke model with Λ([Formula: see text]) [ 25 ]. To carry out this study, we work under the self-similar hypothesis and we assume the same metric, a flat Friedmann–Robertson–Walker metric, and the same matter source, a perfect fluid. We put special emphasis on mathematical and formal aspects, which allows us to calculate exact power-law solutions through symmetry methods, matter collineation, and Noether symmetries. This enables us to compare the solutions of each model and in the same way to contrast the results with some observational data.


Sign in / Sign up

Export Citation Format

Share Document